- 2024-12-20
-
发表了主题帖:
晶振行业小型化趋势:3225及更小尺寸晶体
主流晶振通常分为两种封装形式:贴片式与直插式。贴片式晶振相较直插式晶振体积更小,更广泛应用于智能化电子产品。目前通常采用3225(3.2*2.5mm)及以下尺寸的贴片式晶振。
· 小型化晶体
晶振作为电子设备中的重要时钟信号源,直接关系到设备的工作效率和稳定性。随着科技的发展,尤其是移动设备、可穿戴技术以及物联网(IoT)领域的崛起,智能化产品越来越趋向于便携式,因此对晶振的小型化的需求也逐渐增加。
· 市场趋势
目前,晶振的尺寸和性能已成为决定电子产品性能的重要因素。3225尺寸(3.2mm x 2.5mm)晶振由于其良好的综合性能,已广泛应用于消费类设备。随着消费电子产品向着更便携、更节能/更持久的方向发展,晶振行业的尺寸小型化趋势愈发明显。除了3225尺寸外,市场上逐渐涌现出更加紧凑尺寸的晶振。比如:
①2016 (2.0x1.6mm):这种尺寸的晶体振荡器比3225更小,适用于对空间要求非常严格的便携式设备和穿戴设备。
②1610 (1.6x1.0mm):进一步缩小了尺寸,这种晶体振荡器适合于极小的空间需求,如智能手表、健康监测器等
③1210 (1.2x1.0mm) 和 1008 (1.0x0.8mm):这些是最小的商业可用晶体振荡器之一,专为极端紧凑的应用设计,如微型传感器、RFID标签等。
这些更小尺寸的晶振不仅满足了设备小型化的需求,同时也在性能和稳定性方面也有良好的表现,成为可穿戴设备、物联网终端、智能家居等新兴市场的首选。
· 市场趋势与未来展望
随着5G、物联网(IoT)等技术的发展,市场对于晶振的小型化、低功耗和高精度需求日益增长。预计未来晶振产品将朝以下几个方向发展:
尺寸进一步缩小:小型化是未来晶振技术发展的重要方向,随着制造工艺和技术的不断进步,预计晶振的尺寸将进一步减小,以适应更多应用场景的需求。像1210、1008等微型化产品可能逐步成为市场主流,满足更为紧凑的设备设计需求。
性能持续提升:虽然尺寸不断缩小,但高精度和高稳定性仍然是晶振产品的核心要求。未来的晶振不仅要在频率稳定性、温度稳定性和抗震性等方面达到更高标准,还需要能够满足5G通信、汽车电子等高端市场的高性能需求。
智能化应用扩展:晶振在智能设备中的应用将更加广泛,特别是在物联网、智能家居、可穿戴设备等领域。随着这些应用对晶振的性能和尺寸提出更高要求,晶振制造商需加快技术创新步伐,以适应市场的变化。
以下为小尺寸晶体的参数和特性,可供参考。
未来,随着材料科学和制造工艺的不断进步,我们可以预见更小尺寸的晶体振荡器将会被开发出来。并且随着技术的不断进步和市场需求的变化,未来还将有更多更小尺寸的晶体被开发出来,敬请期待··· ···
- 2024-12-18
-
回复了主题帖:
四脚晶振怎么区分有源无源
还是挺好区分的,边边凹进去的是有源,平滑一点没有凹槽的就是无源
-
发表了日志:
四脚晶振怎么区分有源无源
-
发表了主题帖:
四脚晶振怎么区分有源无源
晶振是一种频率元器件,广泛使用在电子产品中,例如监控设备、手机、吸尘器、智能穿戴等产品都会有晶振的存在。我们常见到的晶振有插件晶振,贴片晶振。
晶振通常分为无源晶振和有源晶振两种类型,其中无源晶振为两脚,有源晶振为四脚,但是,无源晶振也有四脚;四脚无源晶振与四脚有源晶振的区别是什么,你知道吗?
· 通过引脚区分无源晶振和有源晶振
1.两脚晶振必为无源晶振,不管是插件晶振或贴片晶振
2. 无源晶振相对有源晶振厚度较薄;
3.四脚贴片晶振则需谨慎加以区分,有源晶振可以通过本身印字有左下脚(PIN1脚)有个点来区分,相反左下脚没有点则是无源晶振;
4.四脚以上的贴片晶振一定是有源晶振;
5.万用表接地端,看看对立是否有两个脚连通。
以无源晶振YSX321SL系列为例,以下是尺寸及脚位图:
贴片无源晶振在四脚的情况下是没有方向,脚1和脚3为功能脚,负责频率输入及频率输出,另外的脚2和脚4则接地或者悬空,接地增强晶振在线路板上的焊接固定作用、辅助散热、满足电路设计规范等。
四脚无源贴片晶振电路连接原理:电流从晶振脚1流入,脚3流出或电流也可以从脚3流入,脚1流出。因为脚1和脚3为无极性引脚,不具备方向性,不用担心贴反。
以有源晶振YSO110TR系列为例,以下是尺寸及脚位图:
有源晶振引脚识别有个标记点的那一端为1脚,然后逆时针1、2、3、4以此分布。
四脚有源晶振通常的用法:
1脚悬空、2脚接地、3脚接输出、4脚接电压,在1脚位置有一个点作为标识。
- 2024-12-16
-
发表了主题帖:
32.768Khz在电路中的作用
在电子电路领域,32.768Khz(32768Hz)有着特殊的地位和重要的作用。
1、采用32.768Khz的原因
32.768Khz频率在电路设计中被广泛采用,主要是因为其特殊的数学特性。这个频率值经过简单的分频处理,可以方便地得到各种常用的时间基准。例如,通过合适的电路对其进行15次二分频,可以精确地产生1Hz的信号,这对于以秒为单位的计时功能实现非常关键。而且,该频率的晶体振荡器具有较高的稳定性,能够在不同的环境条件下保持相对稳定的输出,从而为电路提供准确可靠的时钟信号,满足诸如实时时钟(RTC)等对时间精度要求较高的应用场景。
2、32.768Khz外接负载的选择
外接负载对于32.768Khz晶体振荡器的性能有着显著影响。选择合适的负载电容至关重要。负载电容值需要根据晶体的规格参数和电路的具体要求来确定。如果负载电容选择不当,可能会导致晶体振荡器的频率偏移,进而影响整个电路的计时准确性。一般来说,常见的负载电容值在7pF 、9PF、12.5pF,在设计电路时,需要考虑与之相连的芯片引脚内部电容,通过计算来选择合适的外部负载电容,以保证晶体振荡器工作在其标称频率附近。
以下是常见负载对应的外接电容值:
晶振负载电容
晶振外接电容
7PF
12~15PF
9PF
15~18PF
12.5PF
18~22PF
实际情况还需进行匹配测试后,推荐最佳外接电容值。
3、32.768Khz外接的电路
如图所示是晶振的整体电路。R1为反相器invl提供偏置,使其中的MOS管工作在饱和区以获得较大的增益;C1,C2和杂散电容一起构成晶体的电容负载, 同时它们和反相器invl一起可以等效为一负阻, 为晶体提供其振荡所需要的能量;R2用来降低对晶体的驱动能量, 以防止晶体振坏或出现异常; 反相器inv2对invl的输出波形整形并驱动负载。
4、32.768Khz与RTC的关系
实时时钟(RTC)作为众多电子设备中时间信息管理的核心模块,其精准运行高度依赖于稳定可靠的时钟源,而32.768Khz晶体振荡器所提供的信号在其中扮演着举足轻重的角色。
在RTC的工作原理中,时间的计量是通过一系列复杂而有序的计数过程实现的。32.768Khz的信号作为这个计数过程的基石,其重要性不言而喻。由于RTC需要精确到秒级甚至更细粒度的时间单位,32.768Khz频率的优势就凸显出来。这个特定频率经过特定的电路设计和内部逻辑处理,可以方便且准确地转换为秒信号。
具体而言,通过对32.768Khz信号进行一系列精确的分频操作,能够在RTC内部产生一个稳定的1Hz信号,而这个1Hz信号正是实现秒计时的关键。每一次1Hz信号的脉冲,就代表着时间走过了一秒,这种基于32.768Khz的分频计时机制构成了RTC对秒计时的基础。
从更广泛的时间维度来看,在实现了秒计时的基础上,RTC利用内部的计数器和寄存器,以32.768Khz信号衍生出的1Hz信号为节拍,进一步对分、时、日等时间单位进行累计和记录。这种精确的计时功能对于各种需要记录时间的电子设备至关重要。
在智能手机中,用户设定的闹钟、日程提醒等功能都依赖于RTC的准确计时,一旦32.768Khz信号出现偏差,可能导致闹钟提前或延迟响起,日程安排错乱等问题;
在电脑主板上,操作系统的时间同步、文件创建和修改时间的记录等操作也都与RTC紧密相关,不准确的32.768Khz信号可能造成系统时间错误,进而影响到文件管理和一些对时间敏感的应用程序的正常运行。
对于智能手表这类可穿戴设备,其小巧的体积内对时间精度要求更高,32.768Khz信号质量直接决定了手表显示时间的准确性,影响用户对设备的使用体验。
此外,32.768Khz信号的稳定性对于RTC在长时间运行中的准确性至关重要。在不同的环境条件下,如温度变化、电磁干扰等因素存在时,32.768Khz晶体振荡器如果能够保持稳定的输出,RTC就能持续准确地计时。然而,如果32.768Khz信号的频率由于外界因素发生了哪怕是微小的偏差,经过长时间的积累,也会导致RTC计时出现明显的误差。因此,在设计包含RTC的电路时,工程师们需要采取一系列措施来确保32.768Khz晶体振荡器工作在最佳状态,以保障RTC计时的高精度和高可靠性。
5、计时解决方案
· 32.768Khz谐振器
在计时系统中,32.768Khz的晶振通常用于为RTC提供稳定且精确的时钟信号,与RTC搭配共同确保了电子设备中时间记录的准确性和可靠性。目前主流使用的为封装尺寸3.2*1.5mm、2.0*1.2mm的32.768Khz晶振,还有小体积1.6*1.0mm的32.768Khz晶振,用于小型化或集成化的计时方案。
6、一体式解决方案(RTC+32.768Khz)
一体式计时解决方案(RTC+32.768Khz)。RTCYSN8563,该款RTC封装为SOP-8,通信接口为I2C Bus,满足1.2~5.5V工作电压。同时与YSN8563相搭配的32.768KhzHz产品(上述YST310S / YSX2012SK等)。一体化的解决方案简化了开发和调试过程,同时保证了产品的整体可靠性,能够实现更精确的计时功能。
- 2024-12-11
-
发表了主题帖:
应对国际制裁挑战,YXC国产晶振助力自主可控
美国近日将140多家中国芯片企业列入“实体名单”,加剧了全球半导体供应链的紧张局势。虽然制裁的核心目标是芯片,但这一变化间接影响了包括晶振在内的整个电子元器件供应链。
一、面对国际制裁压力,电子元器件供应链可能会受到哪些影响?
1、供应链中断:美国对华制裁可能导致关键电子元器件供应中断,特别是高端芯片、高性能传感器和特殊材料等。
2、成本上升:进口受限导致替代品成本增加,企业需支付更高的价格或寻找其他供应商,影响整体生产成本。
3、技术创新受阻:限制技术合作和交流,影响中国企业在高端电子元器件领域的研发和技术创新能力。
虽然晶振并不直接受制裁影响,但受到电子元器件供应链的影响,晶振的供应也面临更大压力。过去,国内许多企业依赖进口晶振,但在当前形势下,依赖国外供应商的风险加大。国产晶振正迎来技术突破和市场机会,成为稳定供应链的关键选择。
二、国产晶振
目前多款时钟频率产品已经能够满足全国产要求(要求基座、晶片、上盖、IC等原材料均由国内生产),且广泛应用于国产化项目。且能够提供自主可控证明与国产化证明等文件。可选全国产替代产品包括且不限于以下类别:
- 2024-12-05
-
发表了主题帖:
智能网联汽车新爆点,车载晶振应用市场需求水涨船高
一、科技热点观察
1)2024年9月,新能源车销量激增51%,体现出市场对新能源汽车的强劲需求。
2)2024年9月中国乘用车市场零售量达到206.3万辆,同比增长2%,环比增长8%。其中,新能源车9月零售量为112万辆,同比增长51%,环比增长9%。
3)2024年9月上市了48款新车,其中不少是智能网联汽车。新车扎堆上市不仅压缩了产品自身传播空间,也反映了智能网联汽车市场的竞争激烈。
4)华为、蔚来等企业在智能网联汽车领域展开积极合作。蔚来宣布正式进入中东与北非市场,并与战略投资者成立合资企业开展相关业务。
5)在2024云栖大会上,小鹏汽车与英伟达等围绕“生成式AI重塑自动驾驶”主题展开了一场圆桌对话,探讨了智能网联汽车技术的未来发展。
6)特斯拉上海超级工厂自2019年1月破土动工以来,仅用32个月就实现了从0到100万辆的突破,从200万辆到300万辆更是只用了13个月。这一速度在全球范围内都是前所未有的。
图源:网络
智能网联汽车领域目前热门技术和产品不断涌现,包括环境感知与识别、定位与导航、控制系统、人工智能与机器学习、通信以及安全与隐私保护等关键技术,以及智能座舱、自动驾驶系统、车载AIOT设备和轻量级行泊一体域控方案等创新产品。
在当前汽车智能化迅猛发展的背景下,新势力玩家们正展开全方位较量,从智能化软件到硬件,每一个细节都至关重要。目前,车载晶振市场已经形成了多元化的竞争格局。国内外众多晶振制造商都在积极投入研发资源,提高产品质量和技术水平,以争夺市场份额。
晶振产品,作为电子设备的“心脏”,其稳定性和精确性对整体性能有着决定性影响。在汽车智能化进程中,晶振产品不仅广泛应用于车载通讯、导航、娱乐等系统,还成为智能驾驶、智能座舱等核心技术的关键支撑。
从应用趋势来看,晶振产品正朝着小型化、高精度、低功耗方向发展。在智能汽车领域,这些特点尤为重要。小型化可以节省宝贵的车内空间,高精度则能确保智能驾驶系统的准确性和可靠性,低功耗则有助于提升整车的续航能力。此外,随着5G、物联网等技术的普及,晶振产品还需要具备更强的兼容性和扩展性,以满足未来汽车智能化发展的需求。
二、车规级晶振的特点
a)符合汽车级温度要求(-40~+125℃)
b)通过车规级认证AEQ-200/IATF16949
c)超薄晶体,最小体积可做到1612
d)满足汽车电子系统对时钟源的高可靠性高要求
e)优异的抗震、抗冲击特性
三、汽车电子晶振主要应用
请注意,表格是一个简化的示例,实际应用中可能还有更多细节和特定的应用案例。晶振的具体型号和规格也会根据应用需求而有所不同,可咨询小扬产品规格书及选型建议。
- 2024-11-29
-
发表了主题帖:
低空经济的精准脉搏——晶振
无人机banner图
自2010年“中国通用航空发展研究”上提出“低空经济”这一概念术语以来,经过了14年的发展历程;到2024年“低空经济”作为新增长引擎被写入中国政府工作报告,标志着低空经济正在成为全球关注的焦点,这也为晶体振荡器行业带来了巨大的机遇与挑战。低空经济是指以各种有人驾驶和无人驾驶航空器的各类低空飞行活动为牵引,辐射并带动相关领域融合发展的综合性经济形态;涵盖了农业、巡检、消防、物流、航空、旅游、应急等多个方面。晶振以其高精度的时间和频率控制功能,成为这一领域不可或缺的核心组件之一。
一、低空经济领域中晶振的应用
低空经济领域的主要产品包含无人机(消费级、工业级)、直升机、传统固定翼飞机以及eVTOL(电动垂直起降飞行器)等飞行器设备。包含的应用场景丰富且多样,包括但不限于:
应用场景分类
在这些丰富多样的应用场景中,飞行器设备依赖晶振提供稳定、可靠的时钟信号,确保飞行控制、导航与数据传输等关键任务的顺利进行。高精度、高稳定性、高可靠性以及低功耗是低空经济设备对晶振的基本要求。针对特殊的应用场景还会有更严格的要求。例如在物流配送应用场景中,物流无人机需要在极端天气条件下正常运作,因此通常会采用温度补偿振荡器(TCXO),以确保在较大温度变化的环境中输出稳定且高精度的时钟信号;在应急通讯或救援行动的应用场景,飞行器设备需要应对复杂多变的环境条件,如高温、低温、电磁干扰等,这些环境条件对飞行器设备的稳定运行提出了更高的要求,对晶体振荡器的可靠性与抗干扰能力提出了更高的标准。
晶振作为飞行器设备的组件之一,除了为飞行器设备的中央处理器提供稳定的时钟频率信号外,还广泛应用于设备的各个功能模块,包括但不限于:
模块
晶振作用
飞行控制模块
为无人机和eVTOL的飞行控制系统提供稳定的时钟信号,确保飞行控制算法的精确执行
导航定位系统
在GPS和其他导航系统中,提供必要的频率基准,保障定位信息的准确性和实时性
通信同步模块
在通信模块中提供稳定的载波频率,确保飞行器与地面控制中心之间的数据传输稳定性和可靠性
安全监控与应急响应
确保监控系统的时间同步和事件记录的准确性
低空经济行业发展空间广阔,晶振作为低空经济这一领域的关键技术,将继续以其高精度和可靠性,为低空经济的发展提供坚实的基础。
二、“低空经济”解决方案
低空经济飞行器设备,如无人机、电动垂直起降飞行器(eVTOL)等,需要在多变的气候和温度条件下保持高度的稳定性和精确性。温补晶振通过内置的温度补偿电路,能够减小环境温度变化对振荡频率的影响,从而确保设备在不同温度下均能提供稳定的频率参考信号。
温补晶振(TCXO)产品,用以满足不同方案需求:
1、通用系列YSO510TP:在-40~85℃的温度范围内,稳定性可达±2.5PPM,具备多种尺寸。
2、预编程系列YSO511PJ:可在10~250MHz范围内自由定制频率。
3、高精度系列YSO512ET:具备超高精度,温度稳定性最高可达±0.1PPM。
· 通用TCXO系列:YSO510TP
YSO510TP为通用系列TCXO。可选频率范围为10~52MHz、尺寸最小可达2.0 x 1.6mm、具备CMOS与Clipped sine wave两种输出方式。在-30~85℃的工作温度范围内,温度稳定性(典型值±2.5PPM,最小值±0.28PPM)。以下为产品实测数据:
YSO510TP温度稳定性测试曲线图
测试结果:在-30~85℃的工作温度范围内,测试样品的温度稳定性满足≤±2.5PPM
· 预编程TCXO系列:YSO511PJ
YSO511PJ产品参数
YSO511PJ为预编程TCXO。在-40~85℃的工作温度范围内,温度稳定性≤±2.5PPM、输出方式为CMOS。该产品可满足10~250MHz范围内任意频率定制,适用于特殊频率需求方案。
· 高精度TCXO系列:YSO512ET
YSO512ET产品参数
YSO512ET为高精度TCXO。适用于10-50MHz范围内的常规频点、封装尺寸为5.0*3.2、7.0*5.0mm、具备CMOS与Clipped sine wave两种输出方式。该产品在-40~85℃工作范围内,温度稳定性最高可达±0.1PPM。
- 2024-11-27
-
发表了主题帖:
电容和电阻与晶振如何搭配运作
电容和电阻与晶振如何搭配运作?
晶振和电容的关系
众所周知,电容的基本功能在于储存电荷并实现充电与放电过程。而在晶振电路中,负载电容与晶振之间存在着紧密的相互作用关系。
晶振的匹配电容,我们可以简单地称它为“负载电容”。想象一下,这个负载电容就像是晶振的一个小助手,帮助晶振开始工作。
晶振,就像是一个需要伙伴才能跳舞的人,而这个伙伴就是负载电容。晶振有两条线,这两条线会连接到IC块(一个集成电路块)里面,那里有一些有效的电容。为了让晶振能够正常工作,我们需要在晶振的外面再接上一个电容,这个电容就是负载电容。
负载电容的作用很重要,它就像是一个桥梁,连接着晶振和电路之间的分布电容。只有当这个桥梁让晶振两端的电容加起来等于负载电容的时候,晶振才能开始工作。这个“开始工作”的过程,我们可以想象成晶振在充电,然后它就开始跳舞了——也就是起振。
小tips:如果工程师在选晶振时,把所需的负载电容等重要参数也说明,那么在晶振选型过程中,会减少很多选型弯路。晶振的负载不能确认的话,电容很难匹配,起振电容无法充电放电,晶振也就起振不了;当分布电容与晶振电容值是相等时,就可以让晶振发出谐振频率了。电容大小能影响晶振频率的稳定度和相位,越小价格也会越高。所以这个负载还决定着晶振本身的一个价格。
晶振和电阻的关系
1、配合IC内部电路组成负反馈、移相,使放大器工作在线性区晶振输入输出连接的电阻作用是产生负反馈,保证放大器工作在高增益的线性区,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振。
想象一下,你有一个放大器,它的作用是把声音或信号变大。但是,如果声音或信号变得太大,它就会失真,就像你大声喊叫时,声音会变得刺耳一样。为了解决这个问题,我们给放大器加上了一个“小助手”——一个电阻。
这个电阻它可以帮助我们调整放大的程度,确保信号既被放大了,又不会失真。同时,这个电阻还能防止放大器过度工作,从而保护它不受损坏。但是,仅仅放大信号还不够,我们还需要让信号像钟摆一样来回摆动,这样才能产生振荡。而这个电阻就能帮助放大器在“线性区”工作,这个区域就像是放大器最适合工作的“舒适区”,在这里,放大器可以稳定地放大信号,并产生我们需要的振荡。
对于不同类型的放大器(比如CMOS和TTL),这个“小助手”的阻值可能会有所不同。CMOS放大器通常需要一个较大的电阻(比如1M以上),而TTL放大器则可能需要根据其类型来调整。不过,有些特殊的放大器(比如某些微处理器中的放大器),它们内部已经自带了这个“小助手”,所以我们就不需要再额外添加了。
2、晶振串联的电阻常用来预防晶振被过分驱动;
具体来说,晶振上的电镀会因为过度的力量而逐渐磨损,这会导致晶振的频率变高,就像是机器转得太快了一样。如果晶振被过度驱动,这种过度的力量还会让晶振提前坏掉,就像机器因为过度使用而提前报废一样。
为了避免这种情况,我们需要调整一个叫做“drive level”的东西,也就是驱动水平。这个驱动水平就像是给晶振的力量大小,我们得找到一个合适的力量,既能让晶振正常工作,又不会让它受到伤害。
同时,我们还需要考虑“发振余裕度”,这就像是给晶振留一点“备用力量”。这样,即使在一些特殊情况下,晶振也能保持稳定的工作状态。
3、并联降低谐振阻抗,使谐振器易启动;
想象一下,Xin(输入端)和Xout(输出端)里面藏着一个叫做“施密特反相器”的小装置。这个小装置有个特点,就是它不能自己启动晶体震荡,就像是一个小孩子不能自己推动一个大轮胎滚动一样。
为了解决这个问题,我们在反相器的两端加了一个电阻,这个电阻就像是一个“助手”,它能帮助反相器把输出的信号反过来(也就是180度翻转),然后再送回给输入端。这样,就形成了一个反馈回路。
接着,我们把晶体并联在这个电阻上。晶体和电阻就像是两个小伙伴,他们一起工作,降低了谐振的阻抗,就像是给轮胎加了点润滑油,让它更容易滚动起来。这样,谐振器就更容易启动了。
而且,这个电阻还有一个好处,就是它能让反馈回路的交流等效按照晶体的频率来谐振。因为晶体的品质因数(Q值)非常高,所以即使电阻的值在很大的范围内变化,也不会影响输出的频率,就像是给轮胎加了一个稳定的“动力源”,让它能够保持稳定的滚动速度。
-
发表了日志:
电容和电阻与晶振如何搭配运作
- 2024-11-25
-
发表了主题帖:
无源晶体分类及重要参数讲解
无源晶体分类介绍及重要参数讲解
无源晶体的分类
晶体振荡电路等效模型
石英晶体是一种可将电能和机械能相互转化的压电器件,能量转变发生在共振频率点上。它可用如下模型表示:
石英晶片经过被电极,上架、封装即成为压电谐振器。当外加电场的交变频率与石英晶片的固有频率相接近,且外加电压的角频率ω等于石英机械振动的固有谐振角频率ω时(取决于石英晶体的几何尺寸和切型),晶片产生机械谐振,弹性振动通过压电效应与回路相耦合,其效果等于由Lm,Cm,Rm的串联臂和C0并联组成的谐振回路。此时机械振动的幅度最大,相应地晶体表面所产生的电荷量最大,外电路中电流最大。
C0:Shunt Capacitance表示晶片与涂敷银层构成的静电容。
Lm:Motional Lnductance是晶体振荡时机械振动惯性的等效电感。
Cm:Motional Capacitance 是晶体谐振时晶片弹性的等效电容。
Rm:Resistance 用于等效晶片振动时的磨擦损耗。
石英晶体谐振器的主要参数
标称频率:该频率特指晶体技术条件中规定的频率,表示为MHz或KHz。
调整频差:标称频率在一定温度(一般是25℃)下的允许偏差,表示为百分数(%)或百万分之几(ppm)。
负载电容(CL):与晶体一起决定负载谐振频率的有效外界电容。任何外部电容一旦与石英晶体串联,即会成为其谐振频率的一个决定因素。负载电容变化时,频率也会随之改变。因此,在电路中使用时,经常会以标准负载电容来微调频率至期望值。
工作温度范围:石英晶体元器件在规定的误差内工作的温度范围。
温度频差:在规定条件下,在工作温度范围内相对于基准温度(25℃±2℃)时工作频率的允许偏差。
等效串联电阻(Rr):晶体在谐振频率下的电阻值,单位为欧姆。
激励功率(DL石英晶体谐振器的主要参数):晶体工作时所消耗功率的表征值。
最大功率是大多数功率器件在保证正常电气参数的情况下,维持工作所消耗的功率,单位为mW或uW。一般情况激励功率应维持在确保石英晶体正常起振和稳定振荡所需要的最低值,以避免年老化特性不良和晶体损伤。
储存温度:晶体在非工作状态下保持标准特性的温度范围。
绝缘电阻:引线之间或引线和壳体之间的电阻。
DLD2:在特定的功率范围内所测量到的最大与最小阻抗的偏差量。
RLD2:在指定的变化功率范围内测量到的最大阻抗。
TS:Trim sensitivity 负载电容值每变化1PF时FL的变化量(单位:ppm/PF)
老化:工作频率在特定时间范围内的变化量,一般表达为最大值,单位是每年频率变化量的百万分之几(ppm/年)。频率随时间而变化的原因有很多,如:密封性和完整性、制造工艺、材料类型、工作温度和频率。
250B测试
规格书描述
-
发表了日志:
无源晶体分类及重要参数讲解
- 2024-11-20
-
发表了日志:
晶体谐振器构造
-
发表了主题帖:
晶体谐振器构造
晶体谐振器构造
首先,晶体谐振器里面的晶体指的是石英晶体,化学式是二氧化硅SiO2。
石英的特点是:热膨胀系数小、Q值高、绝缘等。
石英可以做成晶体谐振器,主要是利用了压电效应。压电效应又分为正压电效应和逆压电效应,以下是百度百科对其的定义:
意思对应下图: ↓
晶体的构造示意图如下:↓
上图左边是晶体构造的示意图,右边是我们常见的晶振的符号
根据对前面压电效应的理解,晶体可以将电能转化为机械能,然后机械能又能转化为电能。如果给晶体通上交流电,收缩和膨胀代表机械振动。
机械振动的物理尺寸和结构固定之后,它本身就有一个固有的振动频率。当外加信号的频率与固有振动频率相等时,就会发生共振,产生谐振现象。
晶振的频率,就是固有振荡频率。再从无源晶体也叫“晶体谐振器”,此处的“谐振”就是这个意思。
- 2024-11-18
-
发表了日志:
晶振的两种主要类型:有源晶振和无源晶振
-
发表了主题帖:
晶振的两种主要类型:有源晶振和无源晶振
晶振的两种主要类型:有源晶振和无源晶振
有源晶振的自振荡特性和无源晶振的使用需求。内容涉及晶振的内部构造,特别是石英晶体的压电效应及其在机械振动中的作用。
· 晶振分类
一般晶振分为两种:有源晶振、无源晶振。
有源晶振也叫晶体振荡器,Oscillator;
无源晶振也叫无源晶体,Crystal,晶体谐振器。
简单来说,有源晶振自己供上电就能输出振荡信号;无源晶体必须额外增加电路才能振荡起来。
以上分类是从使用角度来说的,从内部结构来看,有源晶振是在无源晶振的基础上集成了驱动电路(如放大器、负载电容等),通过封装实现信号放大和稳定输出的功能。无源晶振在电路中起到频率基准的作用,而驱动电路则进一步优化和标准化输出信号,使其能够满足更广泛的应用需求。由于驱动电路的集成和封装的复杂性,有源晶振的制造成本通常高于无源晶振。
可以理解为,有源晶振是在无源晶振提供的基准振荡频率的基础上,通过附加电路进一步完善功能,形成一个即插即用的振荡信号输出设备。只需提供电源,有源晶振即可输出稳定的频率信号,从而简化了下游电路的设计。
- 2024-11-13
-
发表了主题帖:
晶振电路设计诀窍,工程师必备技巧!
晶振作为时钟电路中必不可少的信号传递者,单片机要想正常运作就需要晶振存在。因此,在电子电路设计中也少不了晶振的参与。一个好的晶振电路设计,是能够为电子提供最好的空间利用率,同时发挥最大的功能性作用。
振荡原理
振荡器是一个没有输入信号的带选频网络的正反馈放大器。从能量的角度来说,正弦波振荡器是通过自激方式把直流电能转换为特定频率和幅度的正弦交变能量的电路。对于任何一个带有反馈的放大电路,都可以画成下图所示结构:
▲图1 振荡器
当增益满足∣f∣×∣a∣≥1,且相位条件满足α+β=2πn时,构成正反馈环路,起振条件得以满足。上图即构成一个振荡器。
晶振原理
当在晶体两端加上一定的交变电场,晶片就会产生机械形变,石英晶体振荡器是利用石英晶体的压电效应制的一种谐振器件,若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。同时这个机械形变又会产生相应的交变电压,并且其特征频率下的振幅比其他频率点的振幅大得多。根据这个特点,为了得到低的起振电压和短的起振时间,在晶体两端施加的交变电压的频谱能量应主要集中在晶体的特征频率附近。
▲图2 晶振等效电路
在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振。石英晶体振荡器的等效电路如图2所示。当用石英晶体组成并联谐振电路时,晶体表现为感性,其等效品质因数Q值很高。等效阻抗频率特性如图3所示。
▲图3 晶振等效阻抗
图3中,Fr为串联谐振点。在频率为Fr = 1/(2π√LC)时,图2中串联的L、C谐振,串联支路等效为一个纯电阻。Fa为并联谐振点,此时串联支路等效为电感,与并联的C0谐振,Fa= Fr√1+C/C0。此时等效阻抗趋于无穷大。通常这两个频率点之间的差值很小。
总的来说,可以认为晶振在串联谐振时表现为电阻,在并联谐振时表现为电感。这里建议设计时采用并联谐振。
电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。
皮尔斯振荡器
倒相器作为放大器,同时提供180度的相移。而晶振及负阻电容作为反馈回路,提供剩下的180度相移。RF为反馈电阻,用来决定倒相器的直流工作点,使之工作在高增益区(线性区)。这个电阻值不能太小,否则会导致环路无法振荡。该电路利用晶振的并联谐振,由于并联谐振与C0有关,会受寄生电容影响,因此增加负载电容C1、C2,可减小C0对谐振频率的影响。同时C1、C2的加入会影响起振时间和振荡频率的准确度。负载电容的选择,应根据晶振供应商提供的datasheet的数值选择。在许可范围内,负载电容值越低越好。容值偏大虽有利于振荡器的稳定,但将会增加起振时间。
▲图4 皮尔斯振荡器电路
Rs用于抑制高次谐波,从而使振荡器获得较为纯净的频谱。Rs的值若太小的话,可能会导致晶振的过分驱动(overdrive),导致晶振损坏或寿命减短。通常取Rs=XC2。Rs的影响可以由下图看出。
▲图5 Rs的影响(来自参考资料)
电路设计
如图6,PM0和NM0构成倒相器,与片外电路共同组成振荡环路。PM7~PM9和NM7~NM9组成施密特触发器,对波形进行整形和放大。输出信号再经过两级倒相器,以提高输出级驱动能力。
▲图6 xtal电路原理图
仿真结果演示
Rs小的时候,在同样的激励电压下,波形幅度比Rs大的情况小很多,导致XC输出为一根直线。
▲XOUT
▲图7 XOUT和XC的波形图
晶振设计注意事项
在低功耗设计中晶体的选择非常重要,尤其带有睡眠唤醒的系统,往往使用低电压以求低功耗。由于低供电电压使提供给晶体的激励功率减少,造成晶体起振很慢或根本就不能起振。这一现象在上电复位时并不特别明显,上电时电路有足够的扰动,很容易建立振荡。在睡眠唤醒时,电路的扰动要比上电时小得多,起振变得很不容易。在振荡回路中,晶体既不能过激励(容易振到高次谐波上)也不能欠激励(不容易起振)。
晶体的选择应考虑以下几个要素:谐振频点、负载电容、激励功率、温度特性、长期稳定性。换句话说,晶振可靠性工作不仅受到负载电容的影响。对于负载电容的选择,应根据晶振供应商提供的datasheet的数值选择。在许可范围内,负载电容值越低越好。容值偏大虽有利于振荡器的稳定,但将会增加起振时间。有的晶振推荐电路甚至需要串联电阻RS,它一般用来来防止晶振被过分驱动。过分驱动晶振会渐渐损耗减少晶振的接触电镀,这将引起频率的上升,造成频率偏移,加速老化。
设计经验总结
01首先要选择一个低的等效串联电阻的晶体。晶体串联电阻低有利于解决起振的问题。因为低的晶体等效阻值有利于增加环路增益。
02通过缩短印制电路板的连线间距来减低寄身电容。从而可以帮助解决起振问题和晶振频率稳定度的问题。
03应该保持对晶振应用温度和电压范围保持监控,从而保持晶体起振频率有必要的话要调整电容电阻的值。
04想要得到最佳效果,晶振设计应该采用Vdd峰峰值的至少40%作为驱动时钟反相器的输入信号。仅仅调节晶振两端是不能达到这一要求的。我们也可以参考晶振制造商的使用说明来获得关于晶振设计进一步的帮助。
05对于推荐最优化的R1的阻值可以这样得到,首先计算电容C1,C2的值,然后在R1的位置上设置一个电位计,将电位计的初始值设置为XC1。这样可以通过调节电位计来保证在所需要的频率下起振以及维持晶体稳态振荡。
-
发表了日志:
晶振电路设计诀窍,工程师必备技巧!
- 2024-11-06
-
发表了日志:
频率计-拆机
-
发表了主题帖:
频率计-拆机
今天我们拆解一台美国生产的 BK Precision频率计,型号1856D,3.5GHZ带宽,LED 显示屏可以提供多达9位数字的分辨率。频率计的高精度、高灵敏度广泛应用于实验室和频率测试检测设备上。
发个拆解帖,看有没有懂行的朋友估一下这台设备的成本大概是多少,再看看这台异国他乡的设备用了哪些器件。
在拆之前先查了一下这台设备的手册说明书,发现支持两种供电方式一种是交流AC150V,另一种AC230V。对比分辨率和测试精度还是蛮高的。
接下来先去掉保护壳再卸下外壳下的4颗螺丝,此时可以拆下后壳。这台频率计上的螺丝都是要用梅花形螺丝刀拆卸。
接着把外壳卸下,并把支架取下,此时出现一个金属屏蔽罩(测试仪器对干扰源还是有一定的要求),整个电路板部分包裹在里面。此时拆下1颗屏蔽罩盖板螺丝,取下屏蔽罩,漏出电路板;
接下来仔细看看前PCB板的组成。大致可分为三部分:显示电路,供电电源电路以及主控电路等。板子左下方有个金属盖,我们等会拆开研究一下。此时发现两颗晶振,一颗HC-49UM封装频率为11.0592MHZ,另一颗被金属外壳包裹着,通过小孔看到是一个10MHZ频率源的晶振,推断可能是功能型的晶体作为一个标准的10MHZ频率源来使用。
AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。
通过查询手册发现支持的频率范围是3MHZ~24MHZ,那实际选择的频率是11.0592MHZ,为什么选择11.0592MHZ呢?(结论如图所示)所以在一些串口通信上经常使用11.0592MHZ晶振来进行设计,来降低误码率,使用的晶振的型号如下:
YSX321SL 11.0592MHZ 20PF 10PPM X3225110592MSB4SI
HC-49US 11.0592MHZ 20PF 20PPM X49SD110592MSD2SC
下面我们盘点一下电路板上主要的IC信息:
1)AT89C52 ATMEL MCU,
2)KID65783AP KEC 8CH HIGH-VOLTAGE SOURCE DRIVER
3)2个 74HC245 Nexperia Octal bus transceiver
4)2个 74HC393 Nexperia Dual 4-bit binary ripple counter
5)GAL16V8D-25LPN Lattice
6)74HC138 Nexperia 3-to-8 line decoder/demultiplexer
7)74HC374 Nexperia Octal D-type flip-flop
若干三极管 MOS管及电解电容,拆解到此完成,来按顺序装回去,插上电源,按下开关,正常开机,嘿嘿。里面有好几个我找不到信息的芯片,欢迎大家补充或纠错。