- 2024-12-26
-
回复了主题帖:
【嵌入式AI挑战营,进阶】人脸检测和识别DEMO
吾妻思萌 发表于 2024-12-26 08:14
帧率多少?有18针吗?
demo里的帧率计算的代码被我删掉了,没有数据。帧率应该就10多帧的样子。rtsp推流延迟也高,整体效果勉强。
- 2024-12-25
-
发表了主题帖:
【嵌入式AI挑战营,进阶】人脸检测和识别DEMO
一,背景
之前一直对端侧AI感兴趣,尤其是人脸失败这方面。于是开发板都买了好几块,手里有RV1106的,有RV1126带5寸屏的,还一个瑞芯微官方RV1106g2版本的开发板。但是眼高手低, 把开发环境搭建完后,开发板就长期在吃灰。这次借论坛的活动的机会,重新动起来。感谢电子工程世界论坛,感谢luckfox。
二,开发过程
本次活动是要基于insight face来实现多人的人脸识别,python版本的移植到rv1106上并跑起来,不太现实。于是选择了cpp版本的。跟其他网友的过程差不多,解决了些编译错误,使用mobile opencv库,编译是过了。但是官方提供的模型只支持rv1126的,自己搭建环境再去训练模型,再转rknn部署到板子上,不知道何年何月去了,关键是还不会。
为了能出结果,在luckfox的demo修改下,实现人脸检测和人脸识别加rtsp推流。luckfox的demo使用的RetinaFace和facenet这2中算法。其实insight face应该也是是把这些人脸检测和人脸识别的算法,都集合到一起。
luckfox的官方文档有详细的介绍。本次实现大概流程如下:
1.下载源码
luckfox的官方示例源码路径:
https://github.com/LuckfoxTECH/luckfox_pico_rknn_example.git
https://github.com/LuckfoxTECH/luckfox_pico_rkmpi_example.git
2,拼凑代码
rknn_example仓库下的的demo实现人脸检测和识别,但是在显示屏上显示。rkmpi_example仓库下的demo实现了人脸检测和rtsp推流。
于是选择rknn_example仓库“luckfox_pico_retinaface_facenet”和rkmpi_example仓库下的“luckfox_pico_rtsp_retinaface_osd”这2个工程组合起来。
3,增加一个参考人脸注册功能,并在人脸识别时标出姓名。
代码如下:
main.c
/*-------------------------------------------
Includes
-------------------------------------------*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <pthread.h>
#include "retinaface_facenet.h"
#include <time.h>
#include <sys/time.h>
#include "rtsp_demo.h"
#include "luckfox_mpi.h"
#include <iostream>
#include <map>
#include <string>
void face_register(std::map<std::string, float *> &face_map, const std::string &image_path, rknn_app_context_t *app_facenet_ctx);
#define DISP_WIDTH 720
#define DISP_HEIGHT 480
MB_POOL src_Pool;
MB_BLK src_Blk;
unsigned char *src_data;
VIDEO_FRAME_INFO_S h264_frame;
RK_U32 H264_TimeRef = 0;
VENC_STREAM_S stFrame;
static int rkmpi_init(void)
{
// rkmpi init
if (RK_MPI_SYS_Init() != RK_SUCCESS)
{
RK_LOGE("rk mpi sys init fail!");
return -1;
}
// h264_frame
stFrame.pstPack = (VENC_PACK_S *)malloc(sizeof(VENC_PACK_S));
// Create Pool
MB_POOL_CONFIG_S PoolCfg;
memset(&PoolCfg, 0, sizeof(MB_POOL_CONFIG_S));
PoolCfg.u64MBSize = DISP_WIDTH * DISP_HEIGHT * 3;
PoolCfg.u32MBCnt = 1;
PoolCfg.enAllocType = MB_ALLOC_TYPE_DMA;
// PoolCfg.bPreAlloc = RK_FALSE;
src_Pool = RK_MPI_MB_CreatePool(&PoolCfg);
printf("Create Pool success !\n");
// Get MB from Pool
src_Blk = RK_MPI_MB_GetMB(src_Pool, DISP_WIDTH * DISP_HEIGHT * 3, RK_TRUE);
// Build h264_frame
h264_frame.stVFrame.u32Width = DISP_WIDTH;
h264_frame.stVFrame.u32Height = DISP_HEIGHT;
h264_frame.stVFrame.u32VirWidth = DISP_WIDTH;
h264_frame.stVFrame.u32VirHeight = DISP_HEIGHT;
h264_frame.stVFrame.enPixelFormat = RK_FMT_RGB888;
h264_frame.stVFrame.u32FrameFlag = 160;
h264_frame.stVFrame.pMbBlk = src_Blk;
src_data = (unsigned char *)RK_MPI_MB_Handle2VirAddr(src_Blk);
// venc init
RK_CODEC_ID_E enCodecType = RK_VIDEO_ID_AVC;
venc_init(0, DISP_WIDTH, DISP_HEIGHT, enCodecType);
return 0;
}
rtsp_demo_handle g_rtsplive = NULL;
rtsp_session_handle g_rtsp_session;
static void rtsp_init(void)
{
// rtsp init
g_rtsplive = create_rtsp_demo(554);
g_rtsp_session = rtsp_new_session(g_rtsplive, "/live/0");
rtsp_set_video(g_rtsp_session, RTSP_CODEC_ID_VIDEO_H264, NULL, 0);
rtsp_sync_video_ts(g_rtsp_session, rtsp_get_reltime(), rtsp_get_ntptime());
}
static void *GetMediaBuffer(void *arg)
{
(void)arg;
printf("========%s========\n", __func__);
void *pData = RK_NULL;
int s32Ret;
VENC_STREAM_S stFrame;
stFrame.pstPack = (VENC_PACK_S *)malloc(sizeof(VENC_PACK_S));
while (1)
{
s32Ret = RK_MPI_VENC_GetStream(0, &stFrame, -1);
if (s32Ret == RK_SUCCESS)
{
if (g_rtsplive && g_rtsp_session)
{
pData = RK_MPI_MB_Handle2VirAddr(stFrame.pstPack->pMbBlk);
rtsp_tx_video(g_rtsp_session, (uint8_t *)pData, stFrame.pstPack->u32Len,
stFrame.pstPack->u64PTS);
rtsp_do_event(g_rtsplive);
}
s32Ret = RK_MPI_VENC_ReleaseStream(0, &stFrame);
if (s32Ret != RK_SUCCESS)
{
RK_LOGE("RK_MPI_VENC_ReleaseStream fail %x", s32Ret);
}
}
usleep(10 * 1000);
}
printf("\n======exit %s=======\n", __func__);
free(stFrame.pstPack);
return NULL;
}
/*-------------------------------------------
Main Function
-------------------------------------------*/
int main(int argc, char **argv)
{
system("RkLunch-stop.sh");
const char *model_path = "./model/RetinaFace.rknn";
const char *model_path2 = "./model/mobilefacenet.rknn";
const char *image_path = "./model";
// Model Input
// Retinaface
int retina_width = 640;
int retina_height = 640;
// Facenet
int facenet_width = 160;
int facenet_height = 160;
int channels = 3;
int disp_width = DISP_WIDTH;
int disp_height = DISP_HEIGHT;
int ret;
rknn_app_context_t app_retinaface_ctx;
rknn_app_context_t app_facenet_ctx;
object_detect_result_list od_results;
memset(&app_retinaface_ctx, 0, sizeof(rknn_app_context_t));
memset(&app_facenet_ctx, 0, sizeof(rknn_app_context_t));
// Init Model
init_retinaface_facenet_model(model_path, model_path2, &app_retinaface_ctx, &app_facenet_ctx);
// Init Opencv-mobile
cv::VideoCapture cap;
cv::Mat bgr(disp_height, disp_width, CV_8UC3);
cv::Mat retina_input(retina_height, retina_width, CV_8UC3, app_retinaface_ctx.input_mems[0]->virt_addr);
cap.set(cv::CAP_PROP_FRAME_WIDTH, disp_width);
cap.set(cv::CAP_PROP_FRAME_HEIGHT, disp_height);
cap.open(0);
char show_text[128];
rkmpi_init();
rtsp_init();
pthread_t main_thread;
pthread_create(&main_thread, NULL, GetMediaBuffer, NULL);
printf("init success\n");
cv::Mat frame(cv::Size(DISP_WIDTH, DISP_HEIGHT), CV_8UC3, src_data);
cv::Mat facenet_input(facenet_width, facenet_height, CV_8UC3, app_facenet_ctx.input_mems[0]->virt_addr);
std::map<std::string, float *> face_map;
face_register(face_map, image_path, &app_facenet_ctx);
for (const auto &pair : face_map)
{
std::cout << "name: " << pair.first << " registered" << std::endl;
}
float out_fp32[128];
while (1)
{
h264_frame.stVFrame.u32TimeRef = H264_TimeRef++;
h264_frame.stVFrame.u64PTS = TEST_COMM_GetNowUs();
// opencv get photo
cap >> bgr;
#if 1
cv::resize(bgr, retina_input, cv::Size(retina_width, retina_height), 0, 0, cv::INTER_LINEAR);
ret = inference_retinaface_model(&app_retinaface_ctx, &od_results);
if (ret != 0)
{
printf("init_retinaface_model fail! ret=%d\n", ret);
return -1;
}
for (int i = 0; i < od_results.count; i++)
{
// Get det
object_detect_result *det_result = &(od_results.results[i]);
mapCoordinates(bgr, retina_input, &det_result->box.left, &det_result->box.top);
mapCoordinates(bgr, retina_input, &det_result->box.right, &det_result->box.bottom);
cv::rectangle(bgr, cv::Point(det_result->box.left, det_result->box.top),
cv::Point(det_result->box.right, det_result->box.bottom), cv::Scalar(0, 255, 0), 3);
// Face capture
cv::Rect roi(det_result->box.left, det_result->box.top,
(det_result->box.right - det_result->box.left),
(det_result->box.bottom - det_result->box.top));
cv::Mat face_img = bgr(roi);
// Give five key points
// for(int j = 0; j < 5;j ++)
// {
// //printf("point_x = %d point_y = %d\n",det_result->point[j].x,
// // det_result->point[j].y);
// cv::circle(bgr,cv::Point(det_result->point[j].x,det_result->point[j].y),10,cv::Scalar(0,255,0),3);
// }
letterbox(face_img, facenet_input);
ret = rknn_run(app_facenet_ctx.rknn_ctx, nullptr);
if (ret < 0)
{
printf("rknn_run fail! ret=%d\n", ret);
return -1;
}
output_normalization(&app_facenet_ctx, (uint8_t *)(app_facenet_ctx.output_mems[0]->virt_addr), out_fp32);
for (const auto &pair : face_map)
{
float norm = get_duclidean_distance(pair.second, out_fp32);
if (norm < 1.0)
{
snprintf(show_text, sizeof(show_text), "%s=%.2f", pair.first.c_str(), norm);
cv::putText(bgr, show_text, cv::Point(det_result->box.left, det_result->box.top - 8),
cv::FONT_HERSHEY_SIMPLEX, 0.5,
cv::Scalar(0, 255, 0),
1);
}
}
}
#endif
cv::cvtColor(bgr, frame, cv::COLOR_BGR2RGB);
// send stream
// encode H264
RK_MPI_VENC_SendFrame(0, &h264_frame, -1);
}
RK_MPI_VENC_StopRecvFrame(0);
RK_MPI_VENC_DestroyChn(0);
// Destory MB
RK_MPI_MB_ReleaseMB(src_Blk);
// Destory Pool
RK_MPI_MB_DestroyPool(src_Pool);
free(stFrame.pstPack);
release_facenet_model(&app_facenet_ctx);
release_retinaface_model(&app_retinaface_ctx);
pthread_join(main_thread, NULL);
return 0;
}
人脸注册代码:
#include <dirent.h>
#include <iostream>
#include <map>
#include <string>
#include <sys/types.h>
#include "retinaface_facenet.h"
bool is_image_file(const std::string &filename)
{
const std::string extensions[] = {".jpg", ".jpeg", ".png", ".bmp", ".gif"};
for (const auto &ext : extensions)
{
if (filename.size() >= ext.size() &&
filename.compare(filename.size() - ext.size(), ext.size(), ext) == 0)
{
return true;
}
}
return false;
}
void face_register(std::map<std::string, float *> &face_map, const std::string &image_path, rknn_app_context_t *app_facenet_ctx)
{
DIR *dir = opendir(image_path.c_str());
if (dir == nullptr)
{
perror("opendir");
return;
}
std::cout << "image_path: " << image_path << std::endl;
struct dirent *entry;
int ret;
while ((entry = readdir(dir)) != nullptr)
{
std::string filename = entry->d_name;
if (entry->d_type == DT_REG && is_image_file(filename))
{
std::string filepath = image_path + "/" + filename;
std::cout << "filepath: " << filepath << std::endl;
cv::Mat image = cv::imread(filepath);
cv::Mat facenet_input_ref(160, 160, CV_8UC3, app_facenet_ctx->input_mems[0]->virt_addr);
letterbox(image, facenet_input_ref);
int ret = rknn_run(app_facenet_ctx->rknn_ctx, nullptr);
if (ret < 0)
{
printf("rknn_run fail! ret=%d\n", ret);
return;
}
float *out_fp32_ref = new float[128];
output_normalization(app_facenet_ctx, (uint8_t *)(app_facenet_ctx->output_mems[0]->virt_addr), out_fp32_ref);
// 去掉文件名后缀
size_t last_dot = filename.find_last_of(".");
std::string filename_without_extension = (last_dot == std::string::npos) ? filename : filename.substr(0, last_dot);
face_map[filename_without_extension] = out_fp32_ref;
}
}
closedir(dir);
}
三最终效果
- 2024-12-09
-
回复了主题帖:
InspireFace交叉编译,于RV1106部署运行
我也是按这个思路搞的。我使用的inspireFace中armv7的那个build脚本,修改下交叉编译工具链,增加一些宏配置。
- 2024-11-21
-
回复了主题帖:
入围名单公布:嵌入式工程师AI挑战营(进阶)的挑战者们,领取板卡啦
个人信息已确认,领取板卡,可继续完成任务。
- 2024-11-19
-
回复了主题帖:
嵌入式工程师AI挑战营(进阶):在RV1106部署InsightFace算法的多人实时人脸识别实战
申请理由:
InspireFace is a cross-platform face recognition SDK developed in C/C++, supporting multiple operating systems and various backend types for inference, such as CPU, GPU, and NPU.
InspireFace 为 InsightFace的C++版本的跨平台的SDK,人脸识别相关技术的在嵌入式设备上的开发难点为将各种推理框架的模型转换成RKNN模型。
开发计划:
1,官方提供了已经适配了rv1126的模型数据,尝试移植到RV1106上,实在不行再使用python版本的API。
2,摄像头采集图像,基于OpenCV,实现多人图片中的人脸特征识别。