确保你的ADC代码是否正确,ADI的输入管脚和数字管脚是复用的,默认是GPIO口.
清参考如下例程代码:
//*****************************************************************************
//
// Configure ADC0 for a single-ended input and a single sample. Once the
// sample is ready, an interrupt flag will be set. Using a polling method,
// the data will be read then displayed on the console via UART0.
//
//*****************************************************************************
int
main(void)
{
//
// This array is used for storing the data read from the ADC FIFO. It
// must be as large as the FIFO for the sequencer in use. This example
// uses sequence 3 which has a FIFO depth of 1. If another sequence
// was used with a deeper FIFO, then the array size must be changed.
//
uint32_t pui32ADC0Value[1];
//
// Set the clocking to run at 20 MHz (200 MHz / 10) using the PLL. When
// using the ADC, you must either use the PLL or supply a 16 MHz clock
// source.
// TODO: The SYSCTL_XTAL_ value must be changed to match the value of the
// crystal on your board.
//
SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
SYSCTL_XTAL_16MHZ);
//
// Set up the serial console to use for displaying messages. This is
// just for this example program and is not needed for ADC operation.
//
InitConsole();
//
// Display the setup on the console.
//
UARTprintf("ADC ->\n");
UARTprintf(" Type: Single Ended\n");
UARTprintf(" Samples: One\n");
UARTprintf(" Update Rate: 250ms\n");
UARTprintf(" Input Pin: AIN0/PE7\n\n");
//
// The ADC0 peripheral must be enabled for use.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
//
// For this example ADC0 is used with AIN0 on port E7.
// The actual port and pins used may be different on your part, consult
// the data sheet for more information. GPIO port E needs to be enabled
// so these pins can be used.
// TODO: change this to whichever GPIO port you are using.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
//
// Select the analog ADC function for these pins.
// Consult the data sheet to see which functions are allocated per pin.
// TODO: change this to select the port/pin you are using.
//
GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_7);
//
// Enable sample sequence 3 with a processor signal trigger. Sequence 3
// will do a single sample when the processor sends a signal to start the
// conversion. Each ADC module has 4 programmable sequences, sequence 0
// to sequence 3. This example is arbitrarily using sequence 3.
//
ADCSequenceConfigure(ADC0_BASE, 3, ADC_TRIGGER_PROCESSOR, 0);
//
// Configure step 0 on sequence 3. Sample channel 0 (ADC_CTL_CH0) in
// single-ended mode (default) and configure the interrupt flag
// (ADC_CTL_IE) to be set when the sample is done. Tell the ADC logic
// that this is the last conversion on sequence 3 (ADC_CTL_END). Sequence
// 3 has only one programmable step. Sequence 1 and 2 have 4 steps, and
// sequence 0 has 8 programmable steps. Since we are only doing a single
// conversion using sequence 3 we will only configure step 0. For more
// information on the ADC sequences and steps, reference the datasheet.
//
ADCSequenceStepConfigure(ADC0_BASE, 3, 0, ADC_CTL_CH0 | ADC_CTL_IE |
ADC_CTL_END);
//
// Since sample sequence 3 is now configured, it must be enabled.
//
ADCSequenceEnable(ADC0_BASE, 3);
//
// Clear the interrupt status flag. This is done to make sure the
// interrupt flag is cleared before we sample.
//
ADCIntClear(ADC0_BASE, 3);
//
// Sample AIN0 forever. Display the value on the console.
//
while(1)
{
//
// Trigger the ADC conversion.
//
ADCProcessorTrigger(ADC0_BASE, 3);
//
// Wait for conversion to be completed.
//
while(!ADCIntStatus(ADC0_BASE, 3, false))
{
}
//
// Clear the ADC interrupt flag.
//
ADCIntClear(ADC0_BASE, 3);
//
// Read ADC Value.
//
ADCSequenceDataGet(ADC0_BASE, 3, pui32ADC0Value);
//
// Display the AIN0 (PE7) digital value on the console.
//
UARTprintf("AIN0 = %4d\r", pui32ADC0Value[0]);
//
// This function provides a means of generating a constant length
// delay. The function delay (in cycles) = 3 * parameter. Delay
// 250ms arbitrarily.
//
SysCtlDelay(SysCtlClockGet() / 12);
}
}