hycsystembella

个性签名:亿源通,专注于光通信无源基础器件研发、制造、销售与服务于一体的国家级高新技术企业。

  • 2024-12-29
  • 发表了主题帖: 应用于CPO封装模块内的光纤互联方案

    随着Serdes传输速率的提升,交换机功耗和信号损失、系统集成度等问题愈发具有挑战, CPO新技术渗透率加速提升。根据LightCounting的数据显示,人工智能对网络速率的需求是当前的10倍以上。LightCounting预计CPO技术的出货将从800G和1.6T端口开始,在2024至2025年期间开始商用,2026至2027年开始规模上量,主要应用于超大型云服务商的数通短距场景。   CPO发展Roadmap 共封装光学CPO(Co-Packaged Optics)是一种将光引擎和交换芯片共同封装在一起的光电共封装技术,起到高集成度、降低成本、降低功耗的目的。光引擎(OE, Optical Engines)指的是光收发模块中负责处理光信号的部分,CPO将光引擎和交换芯片共同装配的同一个Socketed上,形成芯片和模组的共封装。光引擎离交换芯片越近,光信号距离越短,SerDes功耗越小。 英伟达的最新产品线路图显示,将于3Q25推出CPO版本的Quantum 3400 X800 IB交换机, 26年推出CPO版本的Spectrum4 Ultra X800以太网交换机。 IB交换机有144个MPO光接口,支持36个3.2T CPO, 内部有4个28.8T的交换芯片(总共115.2T的交换能力)。   芯片之间采用多平面技术。即每一根交换机外面的光纤从MPO口进来之后,会用光纤分纤盒(shuffle box)将其信号拆分成四路并分别连接到四个不同的交换机芯片上,从而将信源切割成最小单元,最终在CX8网卡端进行数据汇聚。允许多个独立平面同时运行。Shuffle box起到关键的信号分配和处理作用。   Shuffle Box – 倍数级容量提升 高速率CPO交换机内部预计需要数千根光纤,这些光纤需要在交换机内部狭小空间中进行排布,还需要解决板中每个光引擎到前面面板的距离(每个OE位于ASIC芯片周围,到前面面板的距离都会有所不同)不一产生的光纤长度不一致带来的制造可靠性问题,除了需要采用更多高密度连接头和适配器,光引擎到端面的连接方式采用光纤柔性光背板shuffle的方式可以有效解决上述问题。     柔性光背板产品设计在灵活的薄膜基板上,可自定义任何光纤路由线路,最大限度减少光纤交叉的应力,同时提供复杂信号通道的路由。常规的光纤配线架1U空间仅支持24芯光纤熔接和分配,按2m高的机柜40U空间计算,1台机柜总容量仅有24×40=960芯容量。利用光纤柔性板技术,结合高密度MT光纤接头,1U光纤机箱可支持12×50=600芯光纤熔接和分配,按2m机柜40U空间计算,1台机柜总容量可达600×40=24000芯,光纤配置容量为常规方案的20倍以上。 高密度连接器需求 Shuffle box依赖高密度连接器(如MPO/MMC连接器等)来实现高速、高密度的信号连接和传输,以满足数据中心等应用场景对网络性能和设备集成度的要求。CPO交换机内部需要大量光纤部署,采用高芯数的MPO可以有效缩减前面板所需端口数量。例如,51.2T CPO内部或需要1152根光纤,普通光纤1024F(和保偏光纤128F),若采用16芯MPO,则需要64个MPO连接器(16×64=1024),对应 CPO 前面板上需要 64个适配器端口。可以对比一下,如果不采用MPO,采用双芯LC连接器,则1024F需要512个连接器(512×2=1024),那对应CPO前面板上需要512个适配器端口,普通1U尺寸的机箱容纳不了这么多数量。这样对比就突显出来高密度连接器的需求。   保偏光纤强需求 CPO激光光源有两种,集成激光源(ILS, Integrated Laser Source)和外部激光源(ELS,External Laser Source)。集成激光源(ILS):是指将激光源与 PIC 集成在同一封装上,形成单一封装解决方案。外部激光源(ELS):将激光源与 PIC 分离成一个独立模块。虽然这种配置占用的空间更大,但其优点是制造工艺更简单、成本更低,降低ASIC芯片散热对激光器稳定性影响。 由于其易于维护和广泛的可及性,外部激光源(External laser source,ELS)是 CPO光源目前较多的解决方案。CPO光引擎的性能对于入射ELS光的偏振状态非常敏感,需要外部光源发射信号时保持激光偏振态,因此需要保偏光纤(Polarization Maintaining Fiber, PMF)连接光源和交换芯片。保偏光纤的使用使得光在光纤中仅沿着一个偏振方向传播,保证了光信号传输的稳定性。由于保偏光纤成本较高,通常用于光信号的引入,而从光芯片到外部端面的光信号导出还是采用非保偏光纤。   光子集成电路(Photonic Integrated Circuit, PlC) 连接 硅基集成光电芯片与外部光纤之间的光互联是芯片封装的关键技术,需要在微米级范围内实现光信号的低损耗传输和高对准精度的耦合。硅基材料因其高折射率特性,导致波导模场直径通常远小于单模光纤的模场直径,从而在模式转换时容易产生高插入损耗。3D光波导能够实现光信号在三维空间的灵活引导和耦合,解决了传统平面光波导技术的局限性,能适应更加复杂的封装需求。通过先进的加工工艺(如光刻、激光直写技术)制造的3D光波导,具备高精度的几何控制和优异的光学性能,为未来硅基光电芯片的高效互联提供了可靠保障。   凭借 20 多年在光通信无源器件制造领域的深厚积累,亿源通科技HYC 可为未来 CPO 连接提供定制化光互联解决方案: •    柔性光背板:支持自动化光纤路由设计与布线,可满足大批量生产需求。 •    MPO/MTP 高密度连接产品:依托高精密模具设计与精密注塑工艺,为 AI 数据中心提供高密度、高可靠性的光纤连接解决方案。 •    保偏 PM 产品:凭借成熟的工艺技术与关键工序自动化生产能力,可确保产品的大规模供应与一致性。 •    光学技术平台:具备空间光学设计与耦合、亚微米级对准、精密光学冷加工及光学检测等能力,为光子集成电路 (PIC) 连接提供设计导入 (design-in) 和联合开发支持。 HYC 的光纤互联方案不仅满足 CPO 模块的高性能需求,还支持未来光模块集成化和高速互联的发展趋势。

  • 2024-11-25
  • 发表了主题帖: 高速光收发模块中WDM波分技术简介

    光模块提升带宽的方法有两种:1)提高每个通道的比特速率,如直接提升波特率,或者保持波特率不变,使用复杂的调制解调方式(如PAM4);2)增加通道数,如提升并行光纤数量,或采用波分复用(CWDM、DWDM)。波分复用技术可以实现单根光纤对多个波长信号的传输,这会成倍提升光纤的传输容量,已经被广泛应用在光通讯的中长距离传输和数据中心的互联中。 目前光模块的波分复用组件主要有两种实现技术:基于空间光学的TFF(薄膜滤波器Thin-Film Filters),基于PLC(集成平面光波导 Planar Light Circuit )的阵列波导光栅(Arrayed Waveguide Grating,AWG)、刻蚀衍射光栅(Echelle Diffraction Grating, EDG)、级联MZI阵列(Mach-Zehnder interferometer, MZI)等。其中TFF(基于Z-BLOCK)和AWG(阵列波导光栅)是两种最常用、最典型的MUX/DEMUX子组件。 TFF(Thin Film Filter)薄膜滤光片技术,在光模块里所用的TFF技术主要采用Z-block方法来实现。利用自由空间光学(Free Space Optics)设计,结合准直器,用4个CWDM波长的滤光片通过微光学的方式进行合波和分波。通过波分复用/解复用器,在一根光纤中传输1271nm、1291nm、1311nm、1331nm四个波长信号。 为了简化封装工艺,以减小尺寸和降低成本,人们开发了基于集成光学技术的CWDM4 AWG芯片。AWG(Arrayed Waveguide Grating)平面阵列波导光栅技术,基于CWDM4-AWG的芯片目前已经成熟且大规模应用于100Gbps CWDM4 QSFP28的产品中。 最早的CWDM4 AWG芯片,输入/输出端口位于两端,如下图所示。为了便于绕纤并集成于光纤收发模块中,人们开发了单侧输入/输出的CWDM4 AWG芯片,通过弯曲波导将输入端口绕至输出端,如图所示。这样的设计,也进一步简化了波导与光纤阵列之间的耦合工艺。当然,由于芯片宽度有限,波导弯曲半径小于1mm,会引入一定的弯曲损耗。 一个CWDM4光纤收发模块中,需要两个CWDM4 AWG芯片,一个用于光信号的复用发射,另一个用于光信号的解复用接收。发射端的CWDM4 AWG芯片目前主要采用图所示的单侧输入/输出结构,而在接收端,解复用的各个波长终将被光探测器检测,无需耦合到单模光纤中继续传输。为此,接收端CWDM4 AWG芯片通常采用图4所示的两侧输入/输出结构,输出端口采用多模光波导,并将输出端面抛光成45°斜面,实现光束的90度转折,入射在光探测器阵列上,后者被直接贴装在PCB板上。 Z-block和AWG均有各自的优缺点,Z-block技术具有损耗低和信道质量好的优点,基于Z-block技术的CWDM4模块,能支持100G或更高速率的信号传输10公里及以上。在应用趋势上,AWG多应用于传统光模块接收端,具备极佳的成本优势和封装优势。 目前这两种方案都有厂商在应用。 下面介绍一下TFF技术中的几个重要组件。 Z-block 波分复用/解复用组件是高速率光模块最为重要的部件之一,而Z-block是波分复用/解复用组件里面核心的器件。 如下图为Z-block的典型结构,中间是一个处理过的斜方棱镜(也是平行四边形玻璃基板),斜方棱镜的背面部分区域镀了高反射膜,另一侧贴有不同波长的WDM滤波片,每个滤光片只能让当前通道波长的光信号通过,并且反射其它通道的波长,也即选择一特定波长的光束通过。   从右侧4个准直器发射的光信号,分别透过对应的滤波片,经不同反射次数,到达左侧公共端的准直器,耦合到输出光纤中。这个过程就实现光路的MUX。例如,含有四个波长的准直光束从入射端依设计角度射入,1271通道直接透过滤波片1,从斜方棱镜增透膜区域输出;1291信号通过滤光片2后入射到棱镜上的反射膜区域,正好被反射到滤波片1上,滤波片1再次将它反射到棱镜上增透膜区域,并从增透膜区域输出;以此类推,1311/1331信号经过来回反射,也最终从block增透膜区域输出,整个光路在Block中呈现Z字型,也因此叫Z-block。 Z-block组件的波分解复用接收光路如下图所示,公共端光信号从左侧准直器输入,各信道的光信号经过不同反射次数,透过对应的滤波片,经微透镜聚焦在光探测器阵列上的对应单元。光探测器阵列贴装在PCB板上,如图(b)所示。在水平面内被波分解复用的光束,需经过一个直角棱镜实现90度转向,沿竖直方向入射在光探测器上。光探测器的有源区尺寸通常只有Φ50微米,Z-block中传输的准直光束直径远大于此,因此需要微透镜聚焦,并且微透镜需要在垂直光路的横截面内,上下左右调节,以将聚焦光斑对准光探测器的有源区。这个调节对焦过程,也增加了Z-block组装工艺的复杂度。 一束光能反射几次? 理论是无数,但是根据光的散射性,和物质对光的吸收性,一束光是有反射次数限制的,直到全部被散射或者吸收。目前,Z-block的通道数量更通用的是4通道,这主要是受到光学性能和装配成品率的约束,因为一束光在Z-block滤波片上反射次数一般不超过4次,通道数量越多,各光束之间的平行度就越差,光斑质量也会越差,影响耦合效率。 目前市场的800G更多是采用8×100G的方案,在800G的FR8、LR8等光模块中,应用比较多的还是Z-block技术方案。各家的800G方案各不同,有大概几种常见的类型: 准直器fiber collimators 光纤准直器,用于输入准直的信号光,将从光纤中的输出光转化成指定光束直径或光斑尺寸的自由空间准直光束,它们还可以反向使用,将光聚焦到光纤中。一般由光纤头、准直透镜和套管组成。当激光从波导发射出来通常是发散角很大的高斯光束,传播在自由空间中光斑很快地发散变大,不利于自由空间中各光学元件的集成,这时候就需要准直器。当光束离开准直器时,准直透镜可确保光束平行或聚焦。准直透镜可以是C-lens、Grin-lens、球透镜、非球面透镜等。 光隔离器 Isolator 光隔离器是一种只允许单向光通过的无源光器件,其工作原理是基于法拉第旋转的非互易性。 光隔离器是由法拉第磁光效应原理制成,当平面偏振光沿着磁场方向入射到非旋光材料时,光偏振面将旋转角度θ, 如果反射光再一次通过法拉第光偏振面将旋转角度2θ。简单地说,光隔离器只允许在同一个方向上的光通过,隔离掉光纤回波反射的光,从而保护激光器不受反射光的干扰。一般由三个部分组成,左右两边分别是输入和输出偏光片,中间是法拉第旋转器。 工作原理是:当光从第一个输入偏光片穿过时,发生垂直偏振,到达中间的旋转器,旋转器只会朝一个方向旋转45°,旋转后的光与放置在旋转器之后的偏光片的角度一致,因此光可以继续通过并输出。当反方向的光通过右边的偏光片进入到旋转器,又再同一个方向旋转45°,被旋转后的光到前面的偏光片,因为极化方向不同,没办法通过,因此被隔离掉,从而在相反方向上阻止光信号的传输。 在光收发器中,通过分立组件组装的方法实现波分复用解复用,包括光纤准直器、WDM滤光片、反射镜、透镜、隔离器等,组装效率较低。通过Z-block自由空间技术,可集成透镜、准直器、隔离器等组件,通过精准的光路设计优化,提高耦合效率。 HYC的这款集成光学组件主要是应用于400G/800G FR/ER/LR高速光收发模块,RX端集成了Receptacle, collimator, Z-block, lens array, isolator, prism等组件,只需一步简单耦合即可组装到光收发模块,极大地简化了光模块的组装和耦合。产品的核心技术在于通过光学模拟仿真,整合精密光学耦合组装和测试以及光学元器件冷加工能力,设计最佳耦合组件,保证快速耦合及最佳插入损耗。HYC可在客户产品开发从Design-in阶段参与联合开发,提供产品设计全光路模拟仿真,Z-block面型尺寸控制,基于客户侧设计不同高斯光束分布情况分析,汇聚光束质量和位置公差分析,到精密光学耦合组装和测试,可靠性管控的定制化服务。  

最近访客

< 1/1 >

统计信息

已有1人来访过

  • 芯积分:20
  • 好友:--
  • 主题:51
  • 回复:0

留言

你需要登录后才可以留言 登录 | 注册


现在还没有留言