-
主人是否也是的同行?
-
今天刚刚听到Easy morning的介绍,运动后喝咖啡可以减少肌肉疼痛,大家不妨试试
顺便提一下,每天8:00到11:00的91.5MH的节目实在是太精彩了,听过的朋友顶一下了
-
Congratulations! Sweet dreams...
-
为了喜欢的人而作些改变仍然算个好男人啊
-
呵呵,很实用的设计,不过真要自己改装还是有些担心,还是谢谢楼主分享
-
多谢斑竹,俺也收了
-
Thanks, 学一下
-
编号计划 GSM网路是复杂的,它包括交换系统和基站系统。交换子系统包括HLR、MSC、VLR、AUC和EIR,和与基站系统、其它网路如PSTN、ISDN,数据网、其它PLMN等间接口。为了将一个呼叫接至某个移动客户,需要调用相应的实体。因此要正确寻址,编号计划就非常重要。下面就GSM移动通信网中用来识别身份的各种号码的编号计划进行介绍。 1.移动台ISDN号码(MSISDN) MSISDN号码是指主叫客户为呼叫数字公用陆地蜂窝移动通信网中客户所需拨的号码。号码的结构为: CC NDC SN |-----------国际移动客户ISDN号码 -------------------| |-- 国内有效移动客户ISDN号码 --| CC=国家码。我国为86。 NDC=国内目的地码,即网路接入号,中国移动GSM网为139,中国联通GSM网为130。 SN=客户号码,采用等长7位编号计划。 中国移动SN号码结构是H1H2H3ABCD,其中HlH2H3为每个移动业务本地网的HLR号码,ABCD为移动客户码。中国联通SN号码结构是H1H2ABCDE,HlH2是移动业务本地网的HLR号码,ABCDE是移动客户码。 当客户号码容量受限时,可扩充国内目的地码。中国移动可启用138,137…,中国联通可启用131,132…等。 2.国际移动客户识别码(IMSI) 为了在无线路径和整个GSM移动通信网上正确地识别某个移动客户,就必须给移动客户分配一个特定的识别码。这个识别码称为国际移动客户识别码(IMSI),用于GSM移动通信网所有信令中,存储在客户识别模块(SIM)、HLR、VLR中。 IMSI号码结构为: MCC MNC MSIN |------------国际移动客户识别 ------------| |--国内移动客户识别 --| MCC=移动国家号码,由3位数字组成,唯一地识别移动客户所属的国家。我国为460。 MNC=移动网号,由2位数字组成,用于识别移动客户所归属的移动网。中国移动GSM PLMN网为00,中国联通GSMPLMN网为0l。 MSIN=移动客户识别码,采用等长11位数字构成。唯一地识别国内GSM移动通信网中移动客户。 3.移动客户漫游号码(MSRN) 被叫客户所归属的HLR知道该客户目前是处于哪一个MSC/VLR业务区,为了提供给入口MSC/VLR(GMSC)一个用于选路由的临时号码,HLR请求被叫所在业务区的MSC/VLR给该被叫客户分配一个移动客户漫游号码(MSRN),并将此号码送至HLR,HLR收到后再发送给GMSC,GMSC根据此号码选路由,将呼叫接至被叫客户目前正在访问的MSC/VLR交换局。路由一旦建立,此号码就可立即释放。这种查询、呼叫选路由功能(即请求一个MSRN功能)是No.7信令中移动应用部分(MAP)的一个程序,在GMSC-HLR-MSC/VLR问的No.7信令网中进行传递。 移动客户漫游号码(MSRN)结构是: CC NDC SN |---------国际移动客户ISDN号 -----------------| |--国内有效移动客户ISDN号码 | 我国邮电部门GSM移动通信网技术体制规定139后第一位为零的MSISDN号码为移动客户漫游号码(MSRN),即 1390MlM2M3ABC。MlM2M3为MSC的号码。MlM2与MSISDN号码中的HlH2相同。 4.临时移动客户识别码(TMSI) 为了对IMSI保密,MSC/VLR可给来访移动客户分配一个唯一的TMSI号码,即为一个由MSC自行分配的4字节的BCD编码,仅限在本MSC业务区内使用。 5.位置区识别码(LAI) 位置区识别码用于移动客户的位置更新,其号码结构是: 3位数字 2位数字 最大16bit MCC MNC LAC |------------LAI-------| MCC=移动客户国家码,同IMSI中的前三位数字。 MNC=移动网号,同IMSI中的MNC。 LAC=位置区号码,为一个2字节BCD编码,表示为 X1X2X3X4。在一个GSM PLMN网中可定义65536个不同的位置区。 6.全球小区识别码(CGI) CGI是用来识别一个位置区内的小区,它是在位置区识别码 (LAI)后加上一个小区识别码(CI),其结构是: 3位数字 2位数字 最大16bit 最大16bit MCC MNC LAC CI |---------------------LAI-----| |---------------------------------------CGI-------| CI是一个2字节BCD编码,由各MSC自定。 7. 基站识别码(BSIC) BSIC是用于识别相邻国家的相邻基站的,为6bit编码,其结构是: 3bit 3bit NCC BCC |--------BSIC-------------| NCC=国家色码,主要用来区分国界各侧的运营者(国内区别不同的省),为XY1Y2。 X:运营者(邮电X=1,联通=0) Y1、Y2:分配见表5-1。 表5-1 Y1Y2的分配 Y2 Y1 0 1 0 吉林、甘肃、西藏、广西、福建、湖北、北京、江苏 黑龙江、辽宁、宁夏、四川、海南、江西、天津、山西、山东 1 新疆、广东、河北、安徽、上海、贵州、陕西 内蒙古、青海、云南、河南、浙江、湖南 NCC=基站色码,识别基站。由运营设定。 8.国际移动台设备识别码(IMEI) 唯一地识别一个移动台设备的编码,为一个15位的十进制数数字,其结构是: 6位数字 2位数字 6位数字 l位数字 TAC FAC SNR SP TAC=型号批准码,由欧洲型号认证中心分配。 FAC=工厂装配码,由厂家编码,表示生产厂家及其装配地。 SNR=序号码,由厂家分配。识别每个TAC和FAC中的某个设备的。 SP=备用,备作将来使用。 9.MSC/VLR号码 MSC/VLR号码在No.7信令信息中使用,代表MSC的号码。我国邮电部门GSM移动通信网中的MSC/VLR号码结构为1390MlM2M3,其中MlM2的分配同HlH2的分配。 lO.HLR号码 切换HLR号码在No.7信令信息中使用,代表HLR的号码。邮电部门GSM移动通信网中的HLR号码结构是客户号码为全零的MSISDN号码,即139HlH2H30000。 11.切换号码(HON) HON是当进行移动交换局间越局切换时,为选择路由,由目标MSC(即切换要转移到的MSC)临时分配给移动客户的一个号码。此号码为MSRN号码的一部分。 5.2 拨号方式 拨号方式是使客户可以通过拨十进制数字实现本地呼叫、国内长途呼叫及国际长途呼叫的一种方式。我国邮电部移动通信网技术体制规定的GSM移动通信的拨号方式是: 移动客户 ? 固定客户(含模拟移动客户) 0XYZ PQR ABCD 固定客户 ? 本地移动客户 139HlH2H3ABCD 固定客户 ? 外地移动客户 0139HlH2H3ABCD 移动客户 ? 移动客户 139HlH2H3ABCD 移动客户 ? 待服业务 0XYZlXX 其中对火警只须拨119,对匪警只须拨110,对急救中心只须拨120,对交警中心只须拨122。 国际客户 ? 移动客户 国际长途有权字冠 +139HlH2H3ABCD 移动客户 ? 国际客户 00 + 国家代码 + 该国内有效电话号码 其中,0=国内长途有权字冠。 00=国际长途有权字冠。 XYZ=长途区号,由3位或2位数字组成。 PQR=局号。 ABCD=客户号码,当长途区号为2位时,客户号可以由4位或5位号码组成。 lXX=特种业务号码。 由于GSM移动通信网的网路接入号是“139”,因此“139”既有特服号码的特性,又有长途区号的特性。因无论国际、国内长途均是分析“139”后接入邮电部门GSM移动通信网的。根据我国电话网技术体制规定的拨号方式是采用闭锁拨号方式,即在一个闭锁编号区内(一个长途编号区为一个闭锁编号区)客户相互呼叫时,不须加拨长途区号,而两个闭锁编号区内的客户相互呼叫时,必须加拨被叫闭锁区的长途区号。因此移动客户呼叫固定电话网客户是两个闭锁编号区内客户互通,移动客户需加拨被叫固定客户所在地的长途区号。反之,固定客户(含模拟移动客户)呼叫移动客户时,同样也是两个闭锁区间的客户互通,固定客户应拨移动客户的“长途区号”139,但在长途区号前需加长途字冠“0”方可知道“0”后的数字是长途区号。这样就出现了一个问题,即无论固定客户呼叫何处移动客户首先均要拨“0139”,限于我国目前公用电话网固定客户大量还属非长途有权客户,又因为移动业务本地网和固定电话本地网相一致,因此就会出现非长途有权固定客户可以呼叫本地固定电话客户而不能呼叫本地GSM移动通信网的移动客户,这显然不合理,而且会给邮电局带来很大的业务损失。所以,我国邮电部移动通信网技术体制在制定GSM移动通信网拨号方式中就将固定客户呼叫本地移动客户和外地移动客户分开规定,呼叫本地移动客户时只须拨139HlH2H3ABCD,这时的139就具有了特服号码特性;呼叫外地移动客户时需在139前加拨长途字冠“0”,这时的139就具有长途区号特性。 当移动客户呼叫移动客户是在同一闭锁编号区内,如按上述说法客户呼叫时只须拨HlH2H:ABCD,不须加拨139,但考虑到将来可能会号码扩容,即启用138,137…,那时客户就必须拨全号(即13XHlH2H3ABCD),网路方可寻找到唯一的一个被叫客户。因此邮电部在制定GSM移动通信网的拨号方式时就规定移动客户呼叫移动客户时拨全号,避免将来客户号码扩容后要改变客户拨号习惯。
-
SIM卡背面的20位数字所代表的含义如下:
前6位:898600中国移动;898601中国联通
第7位:业务接入号,对应于134、135、136、137、138、139中的4、5、6、7、8、9;
第8位:SIM卡的功能位:一般为0,现在的预付费SIM卡为1;
第9、10位:各省的编码;
第11、12位:年号;
第13位:供应商代码;
第14—19位:用户识别码;
第20位:校验位。
中国移动:
如8986 00 79 09 04 4 9311287
分段后的字符串意义分别如下:
8986代表国家中国
00代表运营商中国移动(好像02也是?)
79代表手机号码第三四位,如此卡为1379****
09代表发卡省份编号,代码如下,为中国移动内部使用,只能精确到省
--------------------------
01:北京 02:天津 03:河北 04:山西 05:内蒙古 06:辽宁 07:吉林 08:黑龙江
09:上海 l0:江苏 11:浙江 12:安徽 13:福建 14:江西 15:山东 16:河南
17:湖北 18:湖南 19:广东 20:广西 21:海南 22:四川 23:贵州 24:云南
25:西藏 26:陕西 27:甘肃 28:青海 29:宁夏 30:新疆 31:重庆
另:13800138000充值卡的密码开头两位、系列号6、7两位都是用的这个省份编号
04代表发(制)卡年份2004年
1代表生产厂家,代码如下
--------------------------
0:法国斯伦贝榭 厂家在湖南
1:法国GEMPLUS 厂家在天津(这种卡在芯片接触点上上都有GEMPLUS的标记,注意不是GSMPLUS)
2:德国欧伽(该代号后被武汉天喻替代)
3:江西捷德
4:东信和平
5:大唐电信
6:航天九洲通
7:北京握奇
8:东方英卡
9:北京华虹
A:上海柯斯
B:航天智通
后七位不详,比较随意,有时和手机号码最后若干位相同
中国联通:
如8986 01 04 05 021 063908 S
分段后的字符串意义分别如下:
8986代表国家中国
01代表运营商中国联通(另外CDMA是03)
04代表发(制)卡年份2004年
05代表手机号码第三四位,如此卡为1305****
021代表发卡地区号,如上海021、杭州571……可以精确到城市
后六位比较随意
S代表生产厂家,代码如下
------------------------
A:东方英卡
B:布尔公司
C:上海柯斯
D:欧贝特
E:东信和平
G:法国GEMPLUS
H:北京华虹
S:法国斯伦贝榭
T:大唐电信
W:北京握奇
Y:武汉天喻
J:江西捷德
-
恩,二极管、三极管的参数特性是要搞明白的,这可是电路设计的基础啊
-
请问楼主有无更详细的封装资料介绍?封装的基本知识即可
-
偶以为电子商务在中国的发展瓶颈是网上确认和支付手段,因为网络安全和个人/企业的商业信誉管理都还远未完善
-
本帖最后由 jameswangsynnex 于 2015-3-3 19:59 编辑 支持!希望数字电视不再重蹈DVD的覆辙,还是要尽早把握好自主创新,才不至于象DVD企业那样全军覆没
-
恩,应用资料正需要,图形怎么都看不到?上传到本论坛就好了
-
收集的很全面,谢谢楼主
-
呵呵,谢谢楼主了
-
六、结束语 前面所述仅是把各个标准里对手机发射功率的有关规定拿出来罗列和对比,挂一漏万。但管中窥豹,足见技术的发展和通信协议的进步。 PHS和GSM同为时分多址系统,协议就手机输出功率方面的规定具有可比性,它们与cdma2000 1x、wcdma这些码分多址系统,在手机输出功率方面不具有可比性。码分多址近似的可以认为是在实时的(1.25ms一次),精确的(以0.25 dB)控制手机发射功率,而手机也要实时的、精确的相应控制(具体测试方法见上文),以保证系统的需要。由于多址方式的不同,这就决定了GSM没有必要搞码分多址哪种实时的、精确的、很复杂的功率控制(以节省制造、测试成本),当然也不能像PHS那样,不控制手机输出功率,即便是在微蜂窝内。 在上文中,也是简单介绍了码分多址技术对手机发射功率的控制,事实上码分多址技术对基站和手机的发射功率的规定远不止这些,如接入试探功率、发射开/关控制,呼吸技术等等。现实的情况是,如果没有功率控制等无线资源管理技术的支持,码分多址的性能比时分多址更差。而这些笔者在本文都将其省略了,并不是说这些不重要,而是笔者认为这些与本文着眼点不太一致。 总之,手机发射功率实在是个重要的指标,也是一柄锋利的双刃剑,一方面人们希望它足够大,以克服无线电波传播路径的损耗、发射、折射的损耗,克服其他无线电波的干扰,另一方面又希望它足够小,尽可能小的干扰别人,这点在码分多址系统中尤显突出。解决的办法就是要根据需要控制手机发射功率,在保证所有人的正常通信的情况下,尽可能的把所有手机的发射功率都降下来。当然,这些无疑会加大协议的复杂性,提高手机的制造成本,但这可以保证更多的人同时拥有更多的带宽,这是符合人们一直在追求的提高无线资源利用率这一目标的,毕竟频率资源是不可再生的资源,而手机的制造成本会通过手机的批量生产,最终会降下来。
-
五、wcdma手机发射功率 GSM和wcdma虽然同为欧洲标准,但wcdma毕竟是码分多址的,它采纳,也必须采纳cdma中很多稳定成熟的技术和方案,至少在对手记发射功率控制这块,wcdma和cdma2000 1x就非常类似,只是wcdma对手机功率控制要求更精准、更严格。 笔者认为这里的原因是wcdma毕竟是码分多址的技术,它需要采用功率控制技术,来平衡用户功率,以保证系统每个用户的通信质量和系统的最大容量。虽然GSM和wcdma同为欧洲标准,而且GSM是第二代标准,wcdma是第三代标准,GSM尽管也采用了功率控制技术,但区别还是巨大的:(1) GSM功率控制速率要慢得多,对功率控制升多少、降多少要求并不是很精准,也不是很严格;(2) GSM对功率控制依赖程度要低,而CDMA没有了功率控制将几乎无法工作。 事实上在W—CDMA中,上行链路采用开环功控和闭环功控两种方式。当上行链路没有建立时,开环功控用来调节物理随机接入信道的发射功率。链路建立之后,使用闭环功控。闭环功控包括内环功控和外环功控。外环功控以误码率或者误帧率作为控制目标,内环功控以信干比作为控制目标。下行链路只有闭环功控。1、Open Loop Power 这部分主要以基站发出大信号、中信号、小信号三种状况下,来检测手机是否能正确估算出开环输出功率,以及开环输出功率范围。具体计算公式为:PRACH Preamble Initial Power = (P-CPICH DL TX Power) - (CPICH_RSCP)+ (UL Interference) + (Constant Value)2、Inner Loop Power wcdma 关于手机在内环功控方面作了较好的功率控制位的形式和算法的规定,手机在内环功控下,必须能发出–50dBm到+24 dBm范围内的信号,而且还要求手机能够很好相应基站所发出的功率控制位,当基站发出升(或降)1dB命令时,手机必须升(或降)1dB+/-0.5dB,当基站发出升(或降)10dB命令时,手机必须升(或降)10dB+/-2dB。同时wcdma还规定了A,B,C,D,E,F,G,H 8段区域,来测试手机。将这部分与cdma2000 1x 的闭环功率控制相比,可以看出虽然异曲同工,但wcdma的规定更严谨,更细致。3、Maximum Output Power和Minimum Output Power wcdma与cdma2000 1x在这方面非常类似,故不再赘述。 通过以上的介绍,不难看出WCDMA与IS-95、CDMA 2000 1x没有本质不同,撇开IPR问题,所有的不同点无非是怎样才能更好发挥CDMA的优势、提高系统的性能如系统容量、通信质量和网络覆盖等。
-
四、cdma2000 1x手机发射功率 cdma顾名思义是码分多址,因此在一个小区内的所有用户,都是同时在同一个频率上通讯,因此每个用户都回受到同小区的其它用户的干扰,每个用户都会干扰同小区的其它用户,因此人们也把cdma称之为自干扰系统。 CDMA的基本技术之一是功率控制。因为限制CDMA系统容量的因素是总干扰功率,所以控制每个移动台的功率是获得最大容量的关键。在给定条件下,CDMA移动台的功率被控制到能够保证接收话音质量的最小功率。结果是每个移动台到达基站的信号电平几乎相同。这样,每台移动台对其他移动台的干扰被控制到最小。因此CDMA系统容量也被称为“软容量”,也就是CDMA可以通过降低通信质量来提高系统容量。 如果移动台发射功率过大,会对其他用户带来干扰。它会作为其他接收者的背景噪声存在。如果某用户为了获得完美的话音而没有限制的升高发射信号功率,那么他将不仅影响到本网络的其他用户的通话,而且会影响到该频段上其他通信系统用户的使用。 下面以cdma2000 1x(cdma95类似)为例,详细介绍有关功率控制与测试。cdma2000 1x反向链路采用两种形式的功率控制:开环功率控制和闭环功率控制。 先看开环功率控制:它是假定前向路径损耗与反向路径损耗是相似的链路为前提的。将发射功率与接收功率的总和设置为一个常数,通常为-73dB。[移动台根据在整个1.2288MHz频段接收到的总信号能量(就是在导频、寻呼、同步和业务信道的功率,其中含有从服务基站来的信号与相同频率相邻基站的信号总和来)来调整它的发射功率] 例如:如果移动台接收到的信号功率为-85dBm,这时它的发射功率应当为:-73-(-85)=12dBm 闭环功率控制:基站监视从每个移动台接收的功率并命令移动台以固定的步长1dB(0.5 dB、0.25dB)增加或降低功率(不能保持不变)。这个过程每1.25ms一次(每秒钟重复800次) 从以上资料不难看出,cdma2000 1x不断精确控制手机的发射功率,以达到在能够保证接收质量的情况下的最小功率,下面详细介绍 cdma2000 1x为实现这个目的所作的有关功率方面的测试规定。1、Open Loop Output 这部分主要以基站发出大信号、中信号、小信号三种状况下,来检测手机是否能正确估算出开环输出功率,以及开环输出功率范围。2、Time Response of Open Loop 这部分主要保证,手机在不断运动,或者其他原因,导致接受到基站的信号持续变化时,手机是否能根据这种变化能快速、持续调整开环输出功率。3、Closed Loop Power Range 对于闭环功率控制,基站命令手机进行输出功率调整以优化功率输出。基于收到的电平,基站命令手机增加和降低输出功率,每1.25 ms变化1 dB(800次/秒)。测试闭环功率性能的标准方法包括验证整个功率范围及手机闭环功率控制范围的线性。CDMA手机必须演示±24dB的闭环功率控制范围以及定义的改变功率的速度,以确定手机是否能跟上基站的命令。4、Maximum Output Power和Minimum Output Power 根据以上的介绍,其实基站对手机发射的绝对功率并不是很重视,它仅仅是要求手机能根据自己发出的功率上升指令或功率下降指令自动调整输出功率即可,且最好手机能发出无限大或无限小的功率来,但这个要求对手机制造商来说,实在是苛刻,且会无限制的提高手机制造成本,因此折中的方案是将手机按发射功率分类,不同类的手机最大功率必须达到各自要求,也就是至少要大于标准规定的最大功率的下限,小于标准规定的最大功率的上限,使其在小区远端或无线阴影中也能较好通讯。同时要求手机必须能够输出小于最小功率的功率值来,也就是在无线环境比较好,且手机与基站很近时,手机能把自己的输出功率降得很低,以确保对其它手机的最小干扰和对电池的最小消耗。5、Standby Power cdma2000 1x规定手机待机功率要小于-61 dBm,这既保证了对外干扰很小,又保证了在待机时间对电池的小消耗,延长了手机的待机时间。
-
三、GSM手机发射功率 GSM协议规定,手机发射功率是可以被基站控制的。基站通过下行SACCH信道,发出命令控制手机的发射功率级别,每个功率级别差2dB,GSM900 手机最大发射功率级别是5(33dBm),最小发射功率级别是19(5dBm),DCS1800手机最大发射功率级别是0(30dBm),最小发射功率级别是15(0dBm)。 从以上不难看出当手机远离基站,或者处于无线阴影区时,基站可以命令手机发出较大功率,直至33dBm(GSM900),以克服远距离传输或建筑物遮挡所造成的信号损耗。如果手机离基站很近,且无任何遮挡物时,基站可以命令手机发出较小功率,直至5dBm(GSM900),以减少手机对同信道、相邻信道的其它GSM用户的干扰和其它无线设备的干扰,而且这样还可以有效延长手机待机时间、通话时间。 从以上不难看出GSM手机发出的最低功率仅为5dBm(GSM900),约为3.2mW,这比PHS的平均功率10mW要小,同时GSM手机发出的最大功率33dBm(GSM900),约为2W,这个信号相对来说是巨大的,对这种大信号不加以严格规定,其干扰也是巨大的。因此GSM就手机发射信号除了发射功率的规定以外,在其它方面也作了适当的规定。(注意:这里是适当的规定,如果规定偏严无疑会加大手机制造成本,如果偏松,无疑会加大干扰。)具体有如下几个方面:1、Power versus Time 由于GSM是TDMA系统,因此GSM协议通过一个功率对时间的模板来严格限制发射功率在时间域的变化情况,以减少干扰,尤其是对同信道其他时隙的用户的干扰。2、Output RF Spectrum Due to Modulation3、Output RF Spectrum Due to Ramping GSM通过对手机发射信号的调制谱和切换谱的规定,来限制手机发射信号时的频谱带宽和形状,以减少干扰,尤其是邻信道用户的干扰。 拿GSM协议和PHS协议对比来看,GSM为保证通信质量,规定了手机的发射功率是受基站控制的,根据需要可大可小,但同时又严格规定手机发射信号在时间域和频率域的“形状”(PvT,ORFS),这无疑又极大的限制了手机对外的干扰。而PHS手机的发射功率不可再增大,因此PHS手机与基站之间的无线链路很脆弱的弱点,只能通过建置较密集的基站来解决,这无疑又加大了系统的投资。当然由于它的发射信号始终比较小,信号在时域和频域上的要求也不用很严,生产制造成本、测试成本也都跟着降了下来。 从以上不难看出,同为时分多址系统,单从手机发射功率这点就能看出来,GSM系统优于PHS系统。