MartinFowler

  • 2020-06-15
  • 回复了主题帖: 工业传感器选用方法

    说实话,内容有点空哈

  • 回复了主题帖: 乱用“端接”,信号扑街

    写的还算不错,受教了

  • 回复了主题帖: FPC软板在电子产品中的应用优势和测试的可行性分析

    这种板子,我觉得以后会在大部分应用场合替代以前的那种硬板子。

  • 2020-06-12
  • 发表了主题帖: 如何设计才能让PCB的EMC效果最优

    PCB的EMC设计考虑中,首先涉及的便是层的设置;单板的层数由电源、地的层数和信号层数组成;在产品的EMC设计中,除了元器件的选择和电路设计之外,良好的PCB设计也是一个非常重要的因素。  PCB的EMC设计的关键,是尽可能减小回流面积,让回流路径按照我们设计的方向流动。而层的设计是PCB的基础,如何做好PCB层设计才能让PCB的EMC效果最优呢? 一、PCB层的设计思路 PCB叠层EMC规划与设计思路的核心就是合理规划信号回流路径,尽可能减小信号从单板镜像层的回流面积,使得磁通对消或最小化。   单板镜像层 镜像层是PCB内部临近信号层的一层完整的敷铜平面层(电源层、接地层)。主要有以下作用: (1)降低回流噪声:镜像层可以为信号层回流提供低阻抗路径,尤其在电源分布系统中有大电流流动时,镜像层的作用更加明显。 (2)降低EMI:镜像层的存在减少了信号和回流形成的闭合环的面积,降低了EMI; (3)降低串扰:有助于控制高速数字电路中信号走线之间的串扰问题,改变信号线距镜像层的高度,就可以控制信号线间串扰,高度越小,串扰越小; (4)阻抗控制,防止信号反射。 镜像层的选择 (1)电源、地平面都能用作参考平面,且对内部走线有一定的屏蔽作用; (2)相对而言,电源平面具有较高的特性阻抗,与参考电平存在较大的电势差,同时电源平面上的高频干扰相对比较大; (3)从屏蔽的角度,地平面一般均作了接地的处理,并作为基准电平参考点,其屏蔽效果远远优于电源平面; (4)选择参考平面时,应优选地平面,次选电源平面 二、磁通对消原理 根据麦克斯韦方程,分立的带电体或电流,它们之间的一切电及磁作用都是通过它们之间的中间区域传递的,不论中间区域是真空还是实体物质。在PCB中磁通总是在传输线中传播的,如果射频回流路径平行靠近其相应的信号路径,则回流路径上的磁通与信号路径上的磁通是方向相反的,这时它们相互叠加,则得到了通量对消的效果。 三、磁通对消的本质 磁通对消的本质就是信号回流路径的控制,具体示意图如下: 四、右手定则解释磁通对消效果 如何用右手定则来解释信号层与地层相邻时磁通对消效果,解释如下: (1)当导线上有电流流过时,导线周围便会产生磁场,磁场的方向以右手定则来确定。 (2)当有两条彼此靠近且平行的导线,如下图所示,其中一个导体的电流向外流出,另一个导体的电流向内流入,如果流过这两根导线的电流分别是信号电流和它的回流电流,那么这两个电流是大小相等方向相反的,所以它们的磁场也是大小相等,而方向是相反的,因此能相互抵消。 五、六层板设计实例 对于六层板,优先考虑方案3 分析: (1)由于信号层与回流参考平面相邻,S1、S2、S3相邻地平面,有最佳的磁通抵消效果,优选布线层S2,其次S3、S1。 (2)电源平面与GND平面相邻,平面间距离很小,有最佳的磁通抵消效果和低的电源平面阻抗。 (3)主电源及其对应的地布在4、5层,层厚设置时,增大S2-P之间的间距,缩小P-G2之间的间(相应缩小G1-S2层之间的间距),以减小电源平面的阻抗,减少电源对S2的影响。 对于六层板,备选方案4 分析: 对于局部、少量信号要求较高的场合,方案4比方案3更适合,它能提供极佳的布线层S2。 最差EMC效果,方案2 分析: 此种结构,S1和S2相邻,S3与S4相邻,同时S3与S4不与地平面相邻,磁通抵消效果差。 总结 PCB层设计具体原则: (1)元件面、焊接面下面为完整的地平面(屏蔽); (2)尽量避免两信号层直接相邻; (3)所有信号层尽可能与地平面相邻; (4)高频、高速、时钟等关键信号布线层要有一相邻地平面。

  • 2020-06-11
  • 回复了主题帖: 请教下ALTIUM画图怎么设置默认规则?

    现在改了吗?我以得可以设定啊

  • 回复了主题帖: 你了解 5G NR吗?

    文章太好了。现在5G真是太热了。尤其5G是中国自主知识产权,以后肯定有大发展

  • 回复了主题帖: AG9321实现双USB-C转HDMI/VGA带PD3.0充电方案

    这个思路太好了,可以省充电口。

  • 2020-06-10
  • 回复了主题帖: 迅为i.MX6ULL开发板启动方式和镜像文件格式

    感谢楼主。 楼主还在帖子后面发公众号宣传?

  • 回复了主题帖: T6963C 240*128如何显示9行汉字

    本菜鸟以为:你这个参数设定这一屏,可以跟下面的“请选择修改项:X“,放在一行。一个放左边,一个放右边。这样就压缩成8行了。

  • 回复了主题帖: 边沿检测方法

    替你转发到回帖中吧 1.1.1.原理介绍 学习HDL语言设计与其他语言不一样,HDL语言设计需要考虑更多的信号的电气特性,时序特性。我们先看一下边沿检测的基本原理。       如上图,为我们待检测信号,可以看出边沿的特性:边沿两侧信号的电平发生了变化。红色为上升沿,绿色为下降沿。上升沿之前电平为低,上升沿之后电平为高。下降沿之前为电平为高,下降沿之后电平为低。   设计思路:设计一个多位寄存器key_sfr[2:0],每当系统时钟来一次,就将key_sfr寄存器低2位与输入信号i_key拼接{key_sfr[1:0],i_key},然后再赋值给key_sfr[2:0]寄存器,这样就把i_key信号同步到了key_sfr寄存器的bit0,而之前bit0移位到了bit1,bit1移位到bit2。容易理解key_sfr[1]为key_sfr[0]前一时刻状态,而key_sfr[2]又为key_sfr[1]前一时刻状态。我们通过key_sfr[2:1]既可以判断相邻时刻,输入信号的电平是否发生了变化。当key_sfr[2:1]=2’b01,表示按键前一时刻为低电平,而后一时刻为高电平,相邻时刻,输入信号的电平发生了变化,此时为上升沿。当key_sfr[2:1]=2’b10,表示按键前一时刻为高电平,而后一时刻为低电平,此时为下降沿。   1.1.2.  代码实现 代码主要实现了按键按下时,LED指示灯输出不同的状态,循环8次按下按键,LED分别输出8种不同的指示灯状态。   1. module edge_detect 2. ( 3. input i_clk ,//模块输入时钟 ,50mhz 4. input i_rst_n ,//复位信号,低电平有效 5. input i_key ,//按键输入 6. output reg [3:0] o_led_out //LED指示灯输出 7. ); 8. reg [2:0] key_sfr ; //按键同步移位寄存器 9. wire w_key_rise ;//按键上升沿 10. wire w_key_fall ;//按键下降沿 11. //------------------------------------------------------------------- 12. // 同步i_key信号,i_key为按键输入异步时钟域信号,应同步到本地时钟域 13. //------------------------------------------------------------------- 14. always @ (posedge i_clk or negedge i_rst_n) 15. begin 16. if(!i_rst_n) 17. key_sfr <=3'b000; 18. else 19. key_sfr <={key_sfr[1:0],i_key} ; // key_sfr[2]信号是 i_key经过同步3拍后的信号 20. end 21. //------------------------------------------------------------------- 22. // 判别i_key信号的边沿 23. //------------------------------------------------------------------- 24. assign w_key_rise=(key_sfr[2:1]==2'b01)?1'b1:1'b0; 25. //------------------------------------------------------------------- 26. // 按键按下时,计数器加1,循环记数从0-7. 27. //------------------------------------------------------------------- 28. always @ (posedge i_clk or negedge i_rst_n) 29. begin 30. if(!i_rst_n) 31. key_cnt <=3'b000; 32. else if(w_key_rise) 33. key_cnt <=key_cnt + 1'b1; 34. end 35. //------------------------------------------------------------------- 36. // 计数器在不同状态时输出不同的LED指示灯状态 37. //------------------------------------------------------------------- 38. always @ (posedge i_clk or negedge i_rst_n) 39. begin 40. if(!i_rst_n) 41. o_led_out <=4'b1110; 42. else begin 43. case(key_cnt) //计数器不同状态,输出指示灯状态不同 44. 3'b000: o_led_out<= 4'b1110; 45. 3'b001: o_led_out<= 4'b1101; 46. 3'b010: o_led_out<= 4'b1011; 47. 3'b011: o_led_out<= 4'b0111; 48. 3'b100: o_led_out<= 4'b1100; 49. 3'b101: o_led_out<= 4'b1001; 50. 3'b110: o_led_out<= 4'b0011; 51. 3'b111: o_led_out<= 4'b0000; 52. default: o_led_out<= o_led_out; 53. endcase 54. end 55. end 56. endmodule   1.1.3.  功能仿真 我们不再列出仿真代码,大家可以参考sim文件夹下的代码。双击的批处理文件modelsim_run.bat,就可以启动仿真,调出仿真结果,如下图。可以看到我们模拟8次按键操作,每次按键松开时,LED指示灯都切换至不同的输出状态。       下面我们再通过仿真,具体看一下边沿检测的时序仿真结果。我们找到任意一个i_key信号的上升沿,放大至下图。可以看到i_key先置1,而key_sfr的bit0延迟了一个时钟周期后才置1。key_sfr的bit1则比i_key信号延迟了2个时钟周期,而key_sfr的bit2则比i_key信号延迟了3个时钟周期。上升沿标志信号w_key_rise比实际i_key上升沿是延迟了2个时钟周期的。大家在今后的设计中一定要注意这些时序的小细节,考虑这些延迟是否会给你的设计带来问题。       1.1.4.  实验结果 根据第四章2.4.6节介绍的程序烧写方法,将工程烧写文件烧写至FPGA中,观察现象,并验证设计的正确性。  

  • 回复了主题帖: 简化您的以太网设计

    还有续集? 以太网是工业领域的网络吧。我们通常说的都是Internet

  • 回复了主题帖: 微型双模无线接收器

    感谢楼主分享!

  • 回复了主题帖: Buck-Boost电路中的OVP电路设计--TPS92692-Q1

    这个工具太棒了!感谢楼主

  • 2020-06-09
  • 回复了主题帖: MSP430 G2553 Launchpad实现电容测量

    确实不错啊

  • 回复了主题帖: Loto实践干货(6)用示波器+逻辑分析仪进行SPI解码

    别的不说,这些图是真漂亮

  • 发表了主题帖: EMC基础知识超全总结,搞懂这些你就牛啦

    传导与辐射 电磁干扰(Electromagnetic Interference),简称EMI,有传导干扰和辐射干扰两种。传导干扰主要是电子设备产生的干扰信号通过导电介质或公共电源线互相产生干扰;辐射干扰是指电子设备产生的干扰信号通过空间耦合把干扰信号传给另一个电网络或电子设备。为了防止一些电子产品产生的电磁干扰影响或破坏其它电子设备的正常工作,各国政府或一些国际组织都相继提出或制定了一些对电子产品产生电磁干扰有关规章或标准,符合这些规章或标准的产品就可称为具有电磁兼容性EMC(Electromagnetic Compatibility)。电磁兼容性EMC 标准不是恒定不变的,而是天天都在改变,这也是各国政府或经济组织,保护自己利益经常采取的手段。 EMC标准及测试 国际标准 1、国际电工委员为IEC 2、国际标准华组织ISO 3、电气电子工程师学会IEEE 4、欧盟电信标准委员会ETSI 5、国际无线电通信咨询委员CCIR 6、国际通讯联盟ITU 6、国际电工委员会IEC有以下分会进行EMC标准研究 -CISPR:国际无线电干扰特别委员会 -TC77:电气设备(包括电网)内电磁兼容技术委员会 -TC65:工业过程测量和控制 国际标准化组织 1、FCC联邦通 2、VDE德国电气工程师协会 3、VCCI日本民间干扰 4、BS英国标准 5、ABSI美国国家标准 6、GOSTR俄罗斯政府标准 7、GB、GB/T中国国家标准 EMI测试 1、辐射骚扰电磁场(RE) 2、骚扰功率(DP) 3、传导骚扰(CE) 4、谐波电路(Harmonic) 5、电压波动及闪烁(Flicker) 6、瞬态骚扰电源(TDV) EMS测试 1、辐射敏感度试验(RS) 2、工频次次辐射敏感度试验(PMS) 3、静电放电抗扰度(ESD) 4、射频场感应的传导骚扰抗扰度测试(CS) 5、电压暂降,短时中断和电压变化抗扰度测试(DIP) 6、浪涌(冲击)抗扰度测试(SURGE) 7、电快速瞬变脉冲群抗扰度测试(EFT/B) 8、电力线感应/接触(Power induction/contact) EMC测试结果的评价 A级:实验中技术性能指标正常 B级:试验中性能暂时降低,功能不丧失,实验后能自行恢复 C级:功能允许丧失,但能自恢复,或操作者干预后能恢复 R级:除保护元件外,不允许出现因设备(元件)或软件损坏数据丢失而造成不能恢复的功能丧失或性能降低。 5、电压暂降,短时中断和电压变化抗扰度测试(DIP) 6、浪涌(冲击)抗扰度测试(SURGE) 7、电快速瞬变脉冲群抗扰度测试(EFT/B) 8、电力线感应/接触(Power induction/contact) EMC基础理论 -电磁干扰的时域与频域描述 :时域特性 -电磁干扰的时域与频域描述 :频域特性 -电磁干扰的时域与频域描述 :周期梯形波的 -电磁干扰的时域与频域描述:宽带噪声 -电磁干扰的时域与频域描述:时钟与数据噪声 -分贝(dB)的概念 分贝是电磁兼容中常用的基本单位。 定义为两个功率的比: 传导干扰耦合形式 1、共阻抗耦合 -由两个回路经公共阻抗耦合而产生,干扰量是电流i,或变化的电流di/dt。 2、容性耦合 -在干扰源与干扰对称之间存在着耦合的分布电容而产生,干扰量是变化的电场,即变化的电压du/dt。 3、感性耦合 -在干扰源与干扰对称之间存在着互感而产生,干扰量是变化的磁场,即变化的电流di/dt。 -电场与磁场 电场:导体之间的电压产生电场 -电场强度单位:V/m 磁场:导体上的电流产生磁场 -磁场强度单位:A/m 波阻抗:Zo=E/H 1、差模辐射:电流在信号环路中流动产生 2、共模辐射:由于导体的电位高于参考电位产生 3、PCB主要产生差模辐射 4、线缆主要产生共模辐射 5、差模辐射电场的计算 其中 : E:电场强度(V/m) f :电流的频率(MHz) A:电流的环路面积(cm2) I :电流的强度(mA) r :测试点到电流环路的距离(m) 6、共模辐射电场的计算 其中 : E:电场强度(V/m) f :电流的频率(MHz) L:电缆的长度(m) I :电流的强度(mA) r :测试点到电流环路的距离(m) 7、屏蔽的基本理论和设计要点 7.1屏蔽效能计算公式: SE(dB)= R(dB)+A(dB)+B(dB) R(dB)-reflection loss A(dB)-absorption B(dB)-re-reflection loss 7.2屏蔽设计的基本原则: a、屏蔽体结构简洁,尽可能减少不必要的孔洞,尽可能不要增加额外的缝隙; b、避免开细长孔,通风孔尽量采用圆孔并阵列排放。屏蔽和散热有矛盾时尽可能开小孔,多开孔,避免开大孔; c、足够重视电缆的处理措施,电缆的处理往往比屏蔽本身还重要; d、屏蔽体的电连续性是影响结构件屏蔽效能最主要的因素,相对而言,一般材料本身屏蔽性能以及材料厚度的影响是微不足道的(低频磁场例外); e、注意控制成本; EMC设计 EMC屏蔽设计 1、通风孔及开口设计 2、结构搭接缝屏蔽设计 3、电缆从屏蔽体内穿出 如果导体从屏蔽体中穿出去,将对屏蔽体的屏蔽效能产生显著的劣化作用。这种穿透比较典型的是电缆从屏蔽体中穿出。 4、穿出屏蔽体电缆的设计原则: a、采用屏蔽电缆时,屏蔽电缆在出屏蔽体时,采用夹线结构,保证电缆屏蔽层与屏蔽体之间可靠接地,提供足够低的接触阻抗。 b、采用屏蔽电缆时,用屏蔽连接器转接将信号接出屏蔽体,通过连接器保证电缆屏蔽层的可靠接地。 c、采用非屏蔽电缆时,采用滤波连接器转接,由于滤波器通高频的特性,保证电缆与屏蔽体之间有足够低的高频阻抗。 d、采用非屏蔽电缆时,电缆在屏蔽体的内侧(或者外侧)要足够短,使干扰信号不能有效地耦合出去,从而减小了电缆穿透的影响。 e、电源线通过电源滤波器出屏蔽体,由于滤波器通高频的特性,保证电源线与屏蔽体之间有足够低的高频阻抗。 f、采用光纤出线。由于光纤本身没有金属体,也就不存在电缆穿透的问题。 5、不良接地 6、屏蔽材料及应用(导电布、簧片、导电橡胶) 7、截止波导通风板 8、良好接地 EMC接到设计 1、接地的概念及目的 a、一是为了安全,称为保护接地。电子设备的金属外壳必须接大地,这样可以避免因事故导致金属外壳上出现过高对地电压而危及操作人员和设备的安全。 b、二是为电流返回其源提供低阻抗通道,即工作接地。 c、防雷接地,为雷击提供电流泄放。 2、接地提供信号回流 3、单点接地 适用于工作频率1MHz以下系统 4、多点接地及混合接地   EMC滤波设计 1、滤波 a、滤波电路是由电感、电容、电阻、铁氧体磁珠和共模线圈构成的频率选择性网络,阻止某段频率范围内的信号沿线传递。 b、 滤波电路种类:反射、吸收。 2、滤波器件 a、电容(通用电容、三端电容) b、电感(通用电感、共模电感、磁珠) c、电阻 3、基本的滤波形式 4、差模滤波与共模滤波设计: 5、电容和三端电容特性 6、共模扼流圈 7、铁氧体磁珠 EMC PCB 设计 1、PCB设计 a、布局:同类电路布在一块、控制最小路径原则、高速电路间不要靠近小面板、电源模块靠近进单盘的位置 b、分层:高速布线层必须靠近一层地、电源与地相邻、元件面下布一层地、近可能将两个表层布地层、内层比表层缩进20H c、布线:3W原则、差分对线等长,靠近走、高速或敏感线不能 跨分割区 d、接地:同类电路单独分布地,在单板上单点相连 e、滤波:电源模块、功能电路设计板级虑波电路 f、接口电路设计:接口电路设计滤波电路、实现内外有效隔离 2、布局的基本原则: a、参照原理功能框图,基于信号流向,按照功能模块划分 b、数字电路与模拟电路、高速电路与低速电路、干扰源与敏感电路分开布局 c、单板焊接面避免放置敏感器件或强辐射器件 d、敏感信号、强辐射信号回路面积最小 e、晶体、晶振、继电器、开关电源等强辐射器件或敏感器件远离单板拉手条、对外接口连接器、敏感器件放置,推荐距离≥1000mil f、敏感器件:远离强辐射器件,推荐距离≥1000mil g、隔离器件、A/D器件:输入、输出互相分开,无耦合通路(如相邻的参考平面),最好跨接于对应的分割区 3、特殊器件布局 a、电源部分(置于电源入口处) b、时钟部分(远离开口,靠近负载,布线内层) c、电感线圈(远离EMI源) d、总线驱动部分(布线内层,远离开口,靠近宿) e、滤波器件(输入、输出分开,靠近源,引线短) 4、滤波电容的布局:BULK电容: a、所有分支电源接口电路 b、功耗大的元器件附近 c、存在较大电流变化的区域,如电源模块的输入和输出端、风 扇、继电器等 d、PCB电源接口电路 5、、去藕电容的布局: a、靠近电源管脚 b、位置、数量适当 6、接口电路的布局的基本原则: 接口信号的滤波、防护和隔离等器件靠近接口连接器放置,先防护,后滤波 接口变压器、光耦等隔离器件做到初次级完全隔离 变压器与连接器之间的信号网络无交叉 变压器对应的BOTTOM层区域尽可能没有其它器件放置 接口芯片(网口、E1/T1口、串口等)尽量靠近变压器或连接器放置 7、布线 走线短,不同类走线间距宽(信号及其回流线、差分线、屏蔽地线除外),过孔少,无环路,回路面积小,无线头 有延时要求的走线,其长度符合要求 无直角,对关键信号线优先采用圆弧倒角 相邻层信号走线互相垂直或相邻层的关键信号平行布线≤1000MIL 走线线宽无跳变或满足阻抗一致 各国产品安全和EMC认证组织 -欧美:CE -美国:FCC&UL,NEBS -日本:VCCI -澳大利亚:CE -中国:CCC -台湾:CE -认证申请 -提交认证材料(认证标准、产品使用手册等) -产品测试 -完成测试报告 -颁发认证证书 -产品发布 EMC工程师八个技能 1、EMC的基本测试项目以及测试过程掌握; 2、产品对应EMC的标准掌握; 3、产品的EMC整改定位思路掌握; 4、产品的各种认证流程掌握; 5、产品的硬件硬件知识,对电路(主控、接口)了解; 6、EMC设计整改元器件(电容、磁珠、滤波器、电感、瞬态抑制器件等)使用掌握; 7、产品结构屏蔽设计技能掌握; 8、对EMC设计如何介入产品各个研发阶段流程掌握。

  • 发表了主题帖: EMI、EMS和EMC的定义区别

    EMI、EMS和EMC的定义区别:EMI全称Electromagnetic Interference,即电磁干扰,指电子设备在自身工作过程中产生的电磁波,对外发射并对设备其它部分或外部其它设备造成干扰。 EMS全称Electromagnetic Susceptibility,即电磁敏感度,指电子设备受电磁干扰的敏感程度。 EMC全称Electromagnetic Compatibility,即电磁兼容,要求电源模块等电子设备内部没有严重的干扰源及设备,或电源系统有较好的抗干扰能力。 它们的关系是:有了EMI也就有了EMC,满足EMS要求才能实现EMC,EMC测试是包含EMI和EMS的。 EMI、EMS和EMC的区别:EMI电磁干扰是合成词,应分别考虑电磁和干扰,干扰是指设备受到干扰后性能降低以及对设备产生干扰的干扰源这俩层意思。第一层意思如雷电使收音机产生杂音、拿起电话后听到无线电声音等。 第二层含义就是指干扰源,也包括受到干扰之前的电磁能量。电荷如果静止,称为静电(ESD)。当不同的电位向同一方向移动时,便发生了静电放电,产生电流,电流周围产生磁场。如果电流的方向和大小持续不断变化就产生了电磁波。电以各种状态存在,我们把这些所有状态统称为电磁。EMI标准和EMI检测是确定所处理的电的状态,决定如何检测与评价。 EMS电磁敏感度是指由于电磁能量造成性能下降的容易程度。如果将电子设备比喻为人,将电磁能量比做感冒病毒,敏感度就表示是否易患感冒。如果不易患感冒,说明其免疫力强,也即抗电磁干扰性强。。 EMC电磁兼容性指设备所产生的电磁能量,既不对其它设备产生干扰,也不受其它设备的电磁能量干扰的能力。EMC这个术语有其非常广的含义,电磁能量的检测、抗电磁干扰性试验、检测结果的统计处理、电磁能量辐射抑制技术、雷电和地磁等自然电磁现象、电场磁场对人体的影响、电场强度的国际标准、电磁能量的传输途径、相关标准及限制等均包含在EMC之内。 EMC标准按区域主要分为国际标准(IEC)、欧盟标准(EN)、中国标准(GB/T)等。通用类的EMC标准主要分为居住、轻工业、工业环境等。 随着电气电子技术的发展,电磁环境日渐复杂,产品的电磁兼容性受到企业的重视。各公司将会继续提高电源模块产品的EMC性能,紧随新技术、新材料、新趋势,为用户提供专业化的产品和服务。

  • 2020-06-02
  • 回复了主题帖: 开关电源常用安规要求一览表

    学习了!感谢!

  • 发表了主题帖: 请问此电源是否工作处于稳定状态?

    电源拓补:PSR。控制模式:PSM。开关芯片:LNK3604D。 输入220VAC,输出未满载。 1、该电源如何判定是否稳定??? 2、变压器制作的误差,是否能影响到开关芯片的FB引脚,引起电源其他问题?

  • 2020-05-29
  • 回复了主题帖: 射频地——射频不是你想“地”那样

    感谢楼主。这么多年,到现在对“地”都没真正弄清楚。就知道地要分开什么的。 其实这些基础概念,很应该弄清楚。

最近访客

< 1/1 >

统计信息

已有8人来访过

  • 芯币:-1
  • 好友:--
  • 主题:7
  • 回复:73
  • 课时:--
  • 资源:1

留言

你需要登录后才可以留言 登录 | 注册


现在还没有留言