山鸡哥张强

  • 2024-05-09
  • 点评了资料: 图解实用电子技术丛书-数字电路设计

  • 发表了主题帖: 卡尔曼滤波算法

    卡尔曼滤波算法 卡尔曼滤波算法采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻地观测值来更新对状态变量的估计,求出现刻的估计值。 卡尔曼滤波算法是卡尔曼等 人在20世纪60年代提出的一种递推滤波算法。它的实质是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法。这套算法采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值,在惯性导航系统中有非常广泛的应用。刚才说的噪声指的是计算得出的值与实际值的误差。 那么为什么Kalman滤波会应用到惯性导航系统中呢?这主要是因为惯性导航系统的“纯惯性”传感器不足以达到所需的导航精度,为了补偿导航系统的不足,常常使用其他导航设备来提高导航精度,以减小导航误差。所以利用Kalman滤波算法,可以将来自惯性导航系统与其他导航装置的数据(如惯性导航系统计算的位置对照GPS接收机给出的位置信息)加以混合利用,估计和校正未知的惯性导航系统误差。 卡尔曼滤波算法广泛应用已经超过30年,包括机器人导航,控制, 传感器数据融合甚至军事方面的雷达系统以及导弹追踪等等。 比如,在雷达中,人们感兴趣的是跟踪目标,但目标的位置、速度、加速度的测量值往往在任何时候都有噪声。卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置最优的估计。这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑)。  

  • 点评了资料: 爱上电子学:创客的趣味电子实验.第2版.pdf

发布的帖子

最近访客

现在还没有访客

< 1/0 >

统计信息

已有--人来访过

  • 芯积分:--
  • 好友:--
  • 主题:1
  • 回复:0

留言

你需要登录后才可以留言 登录 | 注册


现在还没有留言