最近可谓几经周折。先前的Lark板子虽然看上去很高端,但实在是资料太少,对于我的应用来说从头开始搭模块不太现实。
与EEWorld 影子 沟通后,在她帮助下,和网友 @chenzhufly 互换了板子,他用的是Arrow SoC。这个板子资料丰富一些,至少在
RocketBoard上有很多教程和资料。
一切看上去都很完美,但做完所有实验后发现,本来Altera承诺的“支持OpenCL开发”结果是一句口号,我找遍了官网也没有发现这块板子的BSP。问过了Arrow的员工 @Alex,得到回答也是暂时还没有BSP。
于是不得以,又换了一块支持OpenCL开发的板子——友晶的DE1-SoC,这块性价比最高的板子。与我交换板子的是 @coyoo 大神(《
深入理解Altera FPGA应用设计》作者),不得不说,论坛果然卧虎藏龙啊。
有幸参加这次比赛,有幸体验了三块不同的板子(总共才4块,太值了),有幸认识了一群技术上的大牛,想想这次赚大发了。
一定有同学会问,你到底要做什么东东,非要用Open CL?
不止一个人问过这个问题了,其实我看到这个比赛时,想想自己都已经不是学生了,没有那么多课外时间搞比赛,所以没打算报名,但刚好看到在全球计算机大会上Altera与百度合作研发的深度神经网络加速器(DNN by FPGA),而自己恰好又有个想法在FPGA上完成卷积神经网络的搭建(工作相关),各种机缘巧合下,毅然报名了。
神经网络有什么用途?它是模拟人大脑的组织形式,用大量神经元之间相互传递消息实现认知功能的,最简单的例子就是物体识别,人看到一张桌子,就会知道这是个桌子,而不是凳子,因为符合“桌子”特征。在人脑中已经通过大量训练,将“桌子”特征记录在神经元之间的权值上了。而对于计算机,通过摄像头看到桌子时,只是一堆像素值(RGB),浅层次的处理如中值滤波,相关,Sobel滤波是无法认知“桌子”这个特征的,而只是将某一维度的信息呈现给用户,让用户自己判断。为了将信息有效组织,需要构建大量的相同功能的神经元,每个单元执行最基本的操作(将输入累加,满足条件时输出给下一个神经元),这样层层累积,最终实现深层次的认知功能,在最末端的神经元直接可以回答“这是个桌子”或者“这是个凳子”或者“这是个椅子”。
卷积神经网络是在上面神经网络基础上做了一些近似。将同一层的神经元权值共享,减少了连接数,有利于计算机实现。
好了,说了这么多,其实说白了一句话就是,我目前算法是用C/C++以及CUDA实现的,如果迁移到FPGA上运行,使用OpenCL是最快的方式,也是这次体验最重要的内容(以前在FPGA上开发都是VHDL/Verilog,设计+仿真验证+调试太花时间,短期内难以完成,而且我目前只关心算法,不关心底层实现,如果能实现最基本的功能,这一阶段就算完成了,后面再考虑资源、时序、性能上的优化。
拿到板子后,仔细阅读了
官方文档,搭建OpenCL环境。
今天时间关系,不再详细展开OpenCL的语法、结构,直接上例子。
烧写TF卡,流程参考我之前的帖子。烧写完成,将SW10拨码开关设置为“01010”(这个很重要,如果没有配置FPGA,后面脚本会lock),上电启动。
上一张图:
PC上打开Putty,设置波特率115200,用户名root,没有密码,进入系统。
可以看得出系统是Poky 8.0 (Yocto Project 1.3 Reference Distro) 1.3 socfpga ttyS0,和之前Lark板子上默认的系统是一样的。
ls一下,当前目录下有很多例程。
先做个准备活动:运行初始化OpenCL环境的脚本:
source ./init_opencl.sh
很快就结束了。我们打开看下这个脚本内容都是什么东东?
- root@socfpga:~/vector_Add# cat ~/init_opencl.sh
- export ALTERAOCLSDKROOT=/home/root/opencl_arm32_rte
- export AOCL_BOARD_PACKAGE_ROOT=$ALTERAOCLSDKROOT/board/c5soc
- export PATH=$ALTERAOCLSDKROOT/bin:$PATH
- export LD_LIBRARY_PATH=$ALTERAOCLSDKROOT/host/arm32/lib:$LD_LIBRARY_PATH
- insmod $AOCL_BOARD_PACKAGE_ROOT/driver/aclsoc_drv.ko
复制代码首先设置了几个环境变量:
ALTERAOCLSDKROOT
AOCL_BOARD_PACKAGE_ROOT
PATH
LD_LIBRARY_PATH
之后执行了insmod操作,加载驱动。
我们可以知道OpenCL的服务是由驱动模块$AOCL_BOARD_PACKAGE_ROOT/driver/aclsoc_drv.ko 提供的。
OK,就绪,下面先进入helloworld目录。
- root@socfpga:~# cd helloworld/
- root@socfpga:~/helloworld# ls
- hello_world.aocx helloworld
复制代码这个目录有hello_world.aocx和 helloworld两个文件。前者运行在FPGA上(OpenCL中称为核函数, Kernel),后者运行在ARM上(OpenCL中称为主机程序,Host Program)。两者编译过程如图所示。
运行步骤如下:
- root@socfpga:~/helloworld# aocl program /dev/acl0 hello_world.aocx
- aocl program: Running reprogram from /home/root/opencl_arm32_rte/board/c5soc/arm32/bin
- Reprogramming was successful!
复制代码可见,运行成功了。
想看源代码,可以在DE1-SoC_openCL_BSP.zip中找到,路径为examples/helloworld/。
后缀为.cl的文件为核函数。上面例子的核函数如下:
- // AOC kernel demonstrating device-side printf call
- __kernel void hello_world(int thread_id_from_which_to_print_message) {
- // Get index of the work item
- unsigned thread_id = get_global_id(0);
- if(thread_id == thread_id_from_which_to_print_message) {
- printf("Thread #%u: Hello from Altera's OpenCL Compiler!\n", thread_id);
- }
- }
复制代码类似C函数,只不过前缀加上“__kernel”关键词,指定它运行在设备(FPGA)上。使用Altera的OpenCL工具就可以编译为FPGA比特流配置文件。
这里的函数功能很简单,只是判断自身线程号是否与主机指定的相同,如果相同则输出一句话,其他线程保持沉默。
接着看下Host Program长什么样。
- #include
- #include
- #include
- #include
- #include
- #include "CL/opencl.h"
- #include "AOCL_Utils.h"
- using namespace aocl_utils;
- #define STRING_BUFFER_LEN 1024
- // Runtime constants
- // Used to define the work set over which this kernel will execute.
- static const size_t work_group_size = 8; // 8 threads in the demo workgroup
- // Defines kernel argument value, which is the workitem ID that will
- // execute a printf call
- static const int thread_id_to_output = 2;
- // OpenCL runtime configuration
- static cl_platform_id platform = NULL;
- static cl_device_id device = NULL;
- static cl_context context = NULL;
- static cl_command_queue queue = NULL;
- static cl_kernel kernel = NULL;
- static cl_program program = NULL;
- // Function prototypes
- bool init();
- void cleanup();
- static void device_info_ulong( cl_device_id device, cl_device_info param, const char* name);
- static void device_info_uint( cl_device_id device, cl_device_info param, const char* name);
- static void device_info_bool( cl_device_id device, cl_device_info param, const char* name);
- static void device_info_string( cl_device_id device, cl_device_info param, const char* name);
- static void display_device_info( cl_device_id device );
- // Entry point.
- int main() {
- cl_int status;
- if(!init()) {
- return -1;
- }
- // Set the kernel argument (argument 0)
- status = clSetKernelArg(kernel, 0, sizeof(cl_int), (void*)&thread_id_to_output);
- checkError(status, "Failed to set kernel arg 0");
- printf("\nKernel initialization is complete.\n");
- printf("Launching the kernel...\n\n");
- // Configure work set over which the kernel will execute
- size_t wgSize[3] = {work_group_size, 1, 1};
- size_t gSize[3] = {work_group_size, 1, 1};
- // Launch the kernel
- status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, gSize, wgSize, 0, NULL, NULL);
- checkError(status, "Failed to launch kernel");
- // Wait for command queue to complete pending events
- status = clFinish(queue);
- checkError(status, "Failed to finish");
- printf("\nKernel execution is complete.\n");
- // Free the resources allocated
- cleanup();
- return 0;
- }
- /////// HELPER FUNCTIONS ///////
- bool init() {
- cl_int status;
- if(!setCwdToExeDir()) {
- return false;
- }
- // Get the OpenCL platform.
- platform = findPlatform("Altera");
- if(platform == NULL) {
- printf("ERROR: Unable to find Altera OpenCL platform.\n");
- return false;
- }
- // User-visible output - Platform information
- {
- char char_buffer[STRING_BUFFER_LEN];
- printf("Querying platform for info:\n");
- printf("==========================\n");
- clGetPlatformInfo(platform, CL_PLATFORM_NAME, STRING_BUFFER_LEN, char_buffer, NULL);
- printf("%-40s = %s\n", "CL_PLATFORM_NAME", char_buffer);
- clGetPlatformInfo(platform, CL_PLATFORM_VENDOR, STRING_BUFFER_LEN, char_buffer, NULL);
- printf("%-40s = %s\n", "CL_PLATFORM_VENDOR ", char_buffer);
- clGetPlatformInfo(platform, CL_PLATFORM_VERSION, STRING_BUFFER_LEN, char_buffer, NULL);
- printf("%-40s = %s\n\n", "CL_PLATFORM_VERSION ", char_buffer);
- }
- // Query the available OpenCL devices.
- scoped_array devices;
- cl_uint num_devices;
- devices.reset(getDevices(platform, CL_DEVICE_TYPE_ALL, &num_devices));
- // We'll just use the first device.
- device = devices[0];
- // Display some device information.
- display_device_info(device);
- // Create the context.
- context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);
- checkError(status, "Failed to create context");
- // Create the command queue.
- queue = clCreateCommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE, &status);
- checkError(status, "Failed to create command queue");
- // Create the program.
- std::string binary_file = getBoardBinaryFile("hello_world", device);
- printf("Using AOCX: %s\n", binary_file.c_str());
- program = createProgramFromBinary(context, binary_file.c_str(), &device, 1);
- // Build the program that was just created.
- status = clBuildProgram(program, 0, NULL, "", NULL, NULL);
- checkError(status, "Failed to build program");
- // Create the kernel - name passed in here must match kernel name in the
- // original CL file, that was compiled into an AOCX file using the AOC tool
- const char *kernel_name = "hello_world"; // Kernel name, as defined in the CL file
- kernel = clCreateKernel(program, kernel_name, &status);
- checkError(status, "Failed to create kernel");
- return true;
- }
- // Free the resources allocated during initialization
- void cleanup() {
- if(kernel) {
- clReleaseKernel(kernel);
- }
- if(program) {
- clReleaseProgram(program);
- }
- if(queue) {
- clReleaseCommandQueue(queue);
- }
- if(context) {
- clReleaseContext(context);
- }
- }
- // Helper functions to display parameters returned by OpenCL queries
- static void device_info_ulong( cl_device_id device, cl_device_info param, const char* name) {
- cl_ulong a;
- clGetDeviceInfo(device, param, sizeof(cl_ulong), &a, NULL);
- printf("%-40s = %lu\n", name, a);
- }
- static void device_info_uint( cl_device_id device, cl_device_info param, const char* name) {
- cl_uint a;
- clGetDeviceInfo(device, param, sizeof(cl_uint), &a, NULL);
- printf("%-40s = %u\n", name, a);
- }
- static void device_info_bool( cl_device_id device, cl_device_info param, const char* name) {
- cl_bool a;
- clGetDeviceInfo(device, param, sizeof(cl_bool), &a, NULL);
- printf("%-40s = %s\n", name, (a?"true":"false"));
- }
- static void device_info_string( cl_device_id device, cl_device_info param, const char* name) {
- char a[STRING_BUFFER_LEN];
- clGetDeviceInfo(device, param, STRING_BUFFER_LEN, &a, NULL);
- printf("%-40s = %s\n", name, a);
- }
- // Query and display OpenCL information on device and runtime environment
- static void display_device_info( cl_device_id device ) {
- printf("Querying device for info:\n");
- printf("========================\n");
- device_info_string(device, CL_DEVICE_NAME, "CL_DEVICE_NAME");
- device_info_string(device, CL_DEVICE_VENDOR, "CL_DEVICE_VENDOR");
- device_info_uint(device, CL_DEVICE_VENDOR_ID, "CL_DEVICE_VENDOR_ID");
- device_info_string(device, CL_DEVICE_VERSION, "CL_DEVICE_VERSION");
- device_info_string(device, CL_DRIVER_VERSION, "CL_DRIVER_VERSION");
- device_info_uint(device, CL_DEVICE_ADDRESS_BITS, "CL_DEVICE_ADDRESS_BITS");
- device_info_bool(device, CL_DEVICE_AVAILABLE, "CL_DEVICE_AVAILABLE");
- device_info_bool(device, CL_DEVICE_ENDIAN_LITTLE, "CL_DEVICE_ENDIAN_LITTLE");
- device_info_ulong(device, CL_DEVICE_GLOBAL_MEM_CACHE_SIZE, "CL_DEVICE_GLOBAL_MEM_CACHE_SIZE");
- device_info_ulong(device, CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE, "CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE");
- device_info_ulong(device, CL_DEVICE_GLOBAL_MEM_SIZE, "CL_DEVICE_GLOBAL_MEM_SIZE");
- device_info_bool(device, CL_DEVICE_IMAGE_SUPPORT, "CL_DEVICE_IMAGE_SUPPORT");
- device_info_ulong(device, CL_DEVICE_LOCAL_MEM_SIZE, "CL_DEVICE_LOCAL_MEM_SIZE");
- device_info_ulong(device, CL_DEVICE_MAX_CLOCK_FREQUENCY, "CL_DEVICE_MAX_CLOCK_FREQUENCY");
- device_info_ulong(device, CL_DEVICE_MAX_COMPUTE_UNITS, "CL_DEVICE_MAX_COMPUTE_UNITS");
- device_info_ulong(device, CL_DEVICE_MAX_CONSTANT_ARGS, "CL_DEVICE_MAX_CONSTANT_ARGS");
- device_info_ulong(device, CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE, "CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE");
- device_info_uint(device, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, "CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS");
- device_info_uint(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, "CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS");
- device_info_uint(device, CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE, "CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE");
- device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR, "CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR");
- device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT, "CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT");
- device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, "CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT");
- device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG, "CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG");
- device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT, "CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT");
- device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE, "CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE");
- {
- cl_command_queue_properties ccp;
- clGetDeviceInfo(device, CL_DEVICE_QUEUE_PROPERTIES, sizeof(cl_command_queue_properties), &ccp, NULL);
- printf("%-40s = %s\n", "Command queue out of order? ", ((ccp & CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE)?"true":"false"));
- printf("%-40s = %s\n", "Command queue profiling enabled? ", ((ccp & CL_QUEUE_PROFILING_ENABLE)?"true":"false"));
- }
- }
复制代码主机程序比较长,主要执行流程为:
初始化平台、寻找设备、打印设备信息、创建设备上下文、在设备上下文中创建指令队列、载入设备代码、编译设备代码、创建核函数对象、设置核函数参数、运行核函数、等待核函数运行结束、清除所有对象。
这是OpenCL的最基本流程,虽然比较繁琐,但熟悉之后几乎每次都是这几步,代码改动很少,真正需要用心设计的是核函数。
好了,再运行一个例子就睡觉。
进入上一级目录,然后切入vectorAdd,运行一下:
- root@socfpga:~/helloworld# cd ..
- root@socfpga:~# ls
- README helloworld opencl_arm32_rte vector_Add
- boardtest init_opencl.sh swapper
- root@socfpga:~# cd vector_Add/
- root@socfpga:~/vector_Add# ls
- vectorAdd vectorAdd.aocx
- root@socfpga:~/vector_Add# aocl program /dev/acl0 vectorAdd.aocx
- aocl program: Running reprogram from /home/root/opencl_arm32_rte/board/c5soc/arm32/bin
- Reprogramming was successful!
- root@socfpga:~/vector_Add# ./vectorAdd
- Initializing OpenCL
- Platform: Altera SDK for OpenCL
- Using 1 device(s)
- de1soc_sharedonly : Cyclone V SoC Development Kit
- Using AOCX: vectorAdd.aocx
- Launching for device 0 (1000000 elements)
- Time: 107.127 ms
- Kernel time (device 0): 6.933 ms
- Verification: PASS
复制代码
这是个向量相加的例子,也是很经典的并行计算例子。核函数内容如下:
- __kernel void vectorAdd(__global const float *x,
- __global const float *y,
- __global float *restrict z)
- {
- // get index of the work item
- int index = get_global_id(0);
- // add the vector elements
- z[index] = x[index] + y[index];
- }
复制代码主机程序如下:
- #include
- #include
- #include
- #include "CL/opencl.h"
- #include "AOCL_Utils.h"
- using namespace aocl_utils;
- // OpenCL runtime configuration
- cl_platform_id platform = NULL;
- unsigned num_devices = 0;
- scoped_array device; // num_devices elements
- cl_context context = NULL;
- scoped_array queue; // num_devices elements
- cl_program program = NULL;
- scoped_array kernel; // num_devices elements
- scoped_array input_a_buf; // num_devices elements
- scoped_array input_b_buf; // num_devices elements
- scoped_array output_buf; // num_devices elements
- // Problem data.
- const unsigned N = 1000000; // problem size
- scoped_array > input_a, input_b; // num_devices elements
- scoped_array > output; // num_devices elements
- scoped_array > ref_output; // num_devices elements
- scoped_array n_per_device; // num_devices elements
- // Function prototypes
- float rand_float();
- bool init_opencl();
- void init_problem();
- void run();
- void cleanup();
- // Entry point.
- int main() {
- // Initialize OpenCL.
- if(!init_opencl()) {
- return -1;
- }
- // Initialize the problem data.
- // Requires the number of devices to be known.
- init_problem();
- // Run the kernel.
- run();
- // Free the resources allocated
- cleanup();
- return 0;
- }
- /////// HELPER FUNCTIONS ///////
- // Randomly generate a floating-point number between -10 and 10.
- float rand_float() {
- return float(rand()) / float(RAND_MAX) * 20.0f - 10.0f;
- }
- // Initializes the OpenCL objects.
- bool init_opencl() {
- cl_int status;
- printf("Initializing OpenCL\n");
- if(!setCwdToExeDir()) {
- return false;
- }
- // Get the OpenCL platform.
- platform = findPlatform("Altera");
- if(platform == NULL) {
- printf("ERROR: Unable to find Altera OpenCL platform.\n");
- return false;
- }
- // Query the available OpenCL device.
- device.reset(getDevices(platform, CL_DEVICE_TYPE_ALL, &num_devices));
- printf("Platform: %s\n", getPlatformName(platform).c_str());
- printf("Using %d device(s)\n", num_devices);
- for(unsigned i = 0; i < num_devices; ++i) {
- printf(" %s\n", getDeviceName(device[i]).c_str());
- }
- // Create the context.
- context = clCreateContext(NULL, num_devices, device, NULL, NULL, &status);
- checkError(status, "Failed to create context");
- // Create the program for all device. Use the first device as the
- // representative device (assuming all device are of the same type).
- std::string binary_file = getBoardBinaryFile("vectorAdd", device[0]);
- printf("Using AOCX: %s\n", binary_file.c_str());
- program = createProgramFromBinary(context, binary_file.c_str(), device, num_devices);
- // Build the program that was just created.
- status = clBuildProgram(program, 0, NULL, "", NULL, NULL);
- checkError(status, "Failed to build program");
- // Create per-device objects.
- queue.reset(num_devices);
- kernel.reset(num_devices);
- n_per_device.reset(num_devices);
- input_a_buf.reset(num_devices);
- input_b_buf.reset(num_devices);
- output_buf.reset(num_devices);
- for(unsigned i = 0; i < num_devices; ++i) {
- // Command queue.
- queue[i] = clCreateCommandQueue(context, device[i], CL_QUEUE_PROFILING_ENABLE, &status);
- checkError(status, "Failed to create command queue");
- // Kernel.
- const char *kernel_name = "vectorAdd";
- kernel[i] = clCreateKernel(program, kernel_name, &status);
- checkError(status, "Failed to create kernel");
- // Determine the number of elements processed by this device.
- n_per_device[i] = N / num_devices; // number of elements handled by this device
- // Spread out the remainder of the elements over the first
- // N % num_devices.
- if(i < (N % num_devices)) {
- n_per_device[i]++;
- }
- // Input buffers.
- input_a_buf[i] = clCreateBuffer(context, CL_MEM_READ_ONLY,
- n_per_device[i] * sizeof(float), NULL, &status);
- checkError(status, "Failed to create buffer for input A");
- input_b_buf[i] = clCreateBuffer(context, CL_MEM_READ_ONLY,
- n_per_device[i] * sizeof(float), NULL, &status);
- checkError(status, "Failed to create buffer for input B");
- // Output buffer.
- output_buf[i] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
- n_per_device[i] * sizeof(float), NULL, &status);
- checkError(status, "Failed to create buffer for output");
- }
- return true;
- }
- // Initialize the data for the problem. Requires num_devices to be known.
- void init_problem() {
- if(num_devices == 0) {
- checkError(-1, "No devices");
- }
- input_a.reset(num_devices);
- input_b.reset(num_devices);
- output.reset(num_devices);
- ref_output.reset(num_devices);
- // Generate input vectors A and B and the reference output consisting
- // of a total of N elements.
- // We create separate arrays for each device so that each device has an
- // aligned buffer.
- for(unsigned i = 0; i < num_devices; ++i) {
- input_a[i].reset(n_per_device[i]);
- input_b[i].reset(n_per_device[i]);
- output[i].reset(n_per_device[i]);
- ref_output[i].reset(n_per_device[i]);
- for(unsigned j = 0; j < n_per_device[i]; ++j) {
- input_a[i][j] = rand_float();
- input_b[i][j] = rand_float();
- ref_output[i][j] = input_a[i][j] + input_b[i][j];
- }
- }
- }
- void run() {
- cl_int status;
- const double start_time = getCurrentTimestamp();
- // Launch the problem for each device.
- scoped_array kernel_event(num_devices);
- scoped_array finish_event(num_devices);
- for(unsigned i = 0; i < num_devices; ++i) {
- // Transfer inputs to each device. Each of the host buffers supplied to
- // clEnqueueWriteBuffer here is already aligned to ensure that DMA is used
- // for the host-to-device transfer.
- cl_event write_event[2];
- status = clEnqueueWriteBuffer(queue[i], input_a_buf[i], CL_FALSE,
- 0, n_per_device[i] * sizeof(float), input_a[i], 0, NULL, &write_event[0]);
- checkError(status, "Failed to transfer input A");
- status = clEnqueueWriteBuffer(queue[i], input_b_buf[i], CL_FALSE,
- 0, n_per_device[i] * sizeof(float), input_b[i], 0, NULL, &write_event[1]);
- checkError(status, "Failed to transfer input B");
- // Set kernel arguments.
- unsigned argi = 0;
- status = clSetKernelArg(kernel[i], argi++, sizeof(cl_mem), &input_a_buf[i]);
- checkError(status, "Failed to set argument %d", argi - 1);
- status = clSetKernelArg(kernel[i], argi++, sizeof(cl_mem), &input_b_buf[i]);
- checkError(status, "Failed to set argument %d", argi - 1);
- status = clSetKernelArg(kernel[i], argi++, sizeof(cl_mem), &output_buf[i]);
- checkError(status, "Failed to set argument %d", argi - 1);
- // Enqueue kernel.
- // Use a global work size corresponding to the number of elements to add
- // for this device.
- //
- // We don't specify a local work size and let the runtime choose
- // (it'll choose to use one work-group with the same size as the global
- // work-size).
- //
- // Events are used to ensure that the kernel is not launched until
- // the writes to the input buffers have completed.
- const size_t global_work_size = n_per_device[i];
- printf("Launching for device %d (%d elements)\n", i, global_work_size);
- status = clEnqueueNDRangeKernel(queue[i], kernel[i], 1, NULL,
- &global_work_size, NULL, 2, write_event, &kernel_event[i]);
- checkError(status, "Failed to launch kernel");
- // Read the result. This the final operation.
- status = clEnqueueReadBuffer(queue[i], output_buf[i], CL_FALSE,
- 0, n_per_device[i] * sizeof(float), output[i], 1, &kernel_event[i], &finish_event[i]);
- // Release local events.
- clReleaseEvent(write_event[0]);
- clReleaseEvent(write_event[1]);
- }
- // Wait for all devices to finish.
- clWaitForEvents(num_devices, finish_event);
- const double end_time = getCurrentTimestamp();
- // Wall-clock time taken.
- printf("\nTime: %0.3f ms\n", (end_time - start_time) * 1e3);
- // Get kernel times using the OpenCL event profiling API.
- for(unsigned i = 0; i < num_devices; ++i) {
- cl_ulong time_ns = getStartEndTime(kernel_event[i]);
- printf("Kernel time (device %d): %0.3f ms\n", i, double(time_ns) * 1e-6);
- }
- // Release all events.
- for(unsigned i = 0; i < num_devices; ++i) {
- clReleaseEvent(kernel_event[i]);
- clReleaseEvent(finish_event[i]);
- }
- // Verify results.
- bool pass = true;
- for(unsigned i = 0; i < num_devices && pass; ++i) {
- for(unsigned j = 0; j < n_per_device[i] && pass; ++j) {
- if(fabsf(output[i][j] - ref_output[i][j]) > 1.0e-5f) {
- printf("Failed verification @ device %d, index %d\nOutput: %f\nReference: %f\n",
- i, j, output[i][j], ref_output[i][j]);
- pass = false;
- }
- }
- }
- printf("\nVerification: %s\n", pass ? "PASS" : "FAIL");
- }
- // Free the resources allocated during initialization
- void cleanup() {
- for(unsigned i = 0; i < num_devices; ++i) {
- if(kernel && kernel[i]) {
- clReleaseKernel(kernel[i]);
- }
- if(queue && queue[i]) {
- clReleaseCommandQueue(queue[i]);
- }
- if(input_a_buf && input_a_buf[i]) {
- clReleaseMemObject(input_a_buf[i]);
- }
- if(input_b_buf && input_b_buf[i]) {
- clReleaseMemObject(input_b_buf[i]);
- }
- if(output_buf && output_buf[i]) {
- clReleaseMemObject(output_buf[i]);
- }
- }
- if(program) {
- clReleaseProgram(program);
- }
- if(context) {
- clReleaseContext(context);
- }
- }
复制代码将100w维度的两个向量相加,用时107.127ms,你可以试试只用ARM计算,看需要多久,对比下性能。
好了,今天到此为止,大家晚安!
本文来自论坛,点击查看完整帖子内容。