环境部署不再赘述,可以参考之前写的帖子
RV1106手把手教你:yolov5图像识别模型从pt转换到onnx再到rknn这次转换MNIST模型,还是一个思路,参考rknn-toolkit2中的yolov5的转换脚本,如rknn-toolkit2/rknn-toolkit2/examples/onnx/yolov5/test.py
1. 删掉所有推理测试的代码
2. 修改dataset.txt中的图片名称
3. IMG_PATH为dataset.txt处理前的图片,使用cv库进行灰度及resize操作
4. ONNX_MODEL为输入的onnx模型
5. RKNN_MODEL为输出的rknn模型
import os
import urllib
import traceback
import time
import sys
import numpy as np
import cv2
from rknn.api import RKNN
# Model from https://github.com/airockchip/rknn_model_zoo
ONNX_MODEL = 'mnist.onnx'
RKNN_MODEL = 'mnist.rknn'
IMG_PATH = './num_pre.jpg'
DATASET = './dataset.txt'
IMG_SIZE = 28
QUANTIZE_ON = True
if __name__ == '__main__':
img = cv2.imread(IMG_PATH)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
cv2.imwrite('num.jpg', img)
# Create RKNN object
rknn = RKNN(verbose=True)
# pre-process config
print('--> Config model')
# mean_values=[[28]], std_values=[[28]] ,
rknn.config(target_platform='rv1106')
print('done')
# Load ONNX model
print('--> Loading model')
ret = rknn.load_onnx(model=ONNX_MODEL)
if ret != 0:
print('Load model failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=QUANTIZE_ON, dataset=DATASET)
if ret != 0:
print('Build model failed!')
exit(ret)
print('done')
# Export RKNN model
print('--> Export rknn model')
ret = rknn.export_rknn(RKNN_MODEL)
if ret != 0:
print('Export rknn model failed!')
exit(ret)
print('done')
rknn.release()
python3 test.py即可得到rknn模型