alan000345

  • 2020-08-12
  • 回复了主题帖: 适用于传感和信号处理的 C2000

    C2000看起来还不错啊。

  • 回复了主题帖: msp430f5529捕获加串口源码

    谢谢分享

  • 2020-08-11
  • 发表了主题帖: 一文掌握 GaN 器件的直接驱动配置!

    本帖最后由 alan000345 于 2020-8-11 23:53 编辑 简介 在设计开关模式电源时,主要品质因数(FOM)包括成本、尺寸和效率。[1]这三个FOM是耦合型,需要考虑诸多因素。例如,增加开关频率可减小磁性元件的尺寸和成本,但会增加磁性元件的损耗和功率器件中的开关损耗。由于GaN的寄生电容低且没有二极管反向恢复,因此与MOSFET和IGBT相比,GaN HEMT具有显著降低损耗的潜力。 image.png(41.9 KB, 下载次数: 0) 下载附件 保存到相册 5 分钟前 上传   图1:共源共栅驱动和直接驱动配置 通常来讲,MOSFET/IGBT驱动提供合适的导通和关断电流,以支持输入电容。驱动输出和设备栅极之间的外部电阻控制压摆率,并抑制功率和栅极环路振铃。随着GaN压摆率增加,外部组件增加了过多的寄生电感,无法控制开关。将驱动与GaN器件集成到封装中可最大程度降低寄生电感、降低开关损耗并优化驱动控制。   直接驱动优点 漏端和漏端之间的GaN中存在本征二维电子气层(2-DEG),使该器件在零栅极-漏端电压下导电。出于安全原因,没有偏置电源时,必须关闭开关电源中使用的电源器件,以将输入与输出断开。为模拟增强模式器件,将低压MOSFET与GaN源端串联放置。图1所示为实现此目的的两种不同配置:共源共栅驱动和直接驱动。 现在,我们将对比功耗,并描述与每种方法相关的警告所涉及的问题。 在共源共栅配置中,GaN栅极接地,MOSFET栅极被驱动,以控制GaN器件。由于MOSFET是硅器件,因此许多栅极驱动可用。但由于在GaN器件关闭之前必须将GaN栅极至漏端电容(Cgs)和MOSFET Coss充电至GaN阈值电压,因此该配置具有较高的组合Coss。 在直接驱动配置中,MOSFET是一个直接驱动配置,由栅极驱动器在接地和负电压(VNEG)之间驱动的GaN栅极导通/关断组合器件。此外,MOSFET Coss无需充电。关断GaN Cgs的电流来自较低的偏压电源。较低的电源电压可提供相同的GaN栅极至漏端电荷(Qgs),从而可降低功耗。这些功率效率差异在更高的开关频率下会进一步放大。 反向恢复Qrr损失对于共源共栅配置有效。这是因为在第三象限导通中,MOSFET关断,并通过体二极管导通。   image.png(185.62 KB, 下载次数: 0) 下载附件 保存到相册 4 分钟前 上传   图 2:硬切换操作导致过多振铃 由于负载电流反向流动,因此MOSFET中存储了电荷。克服反向恢复电荷的电流来自高电压电源,这会导致大量电损失。但在直接驱动配置中,MOSFET始终处于导通状态,且由于其RDSON低,其寄生二极管也不会导通。因此,最终在直接驱动配置中不会出现与Qrr相关的功率损耗。 在共源共栅配置中,由于GaN漏源电容高(Cds)[2,3],处于关断模式的GaN和MOSFET之间的电压分布会导致MOSFET雪崩。可在MOSFET的漏端和漏端之间并联一个电容器[4]予以解决。但这仅适用于软开关应用,并在硬开关应用中导致高功率损耗。 鉴于GaN栅极已连至MOSFET的漏端,因此无法控制共源共栅驱动中的开关压摆率。在硬开关操作中,来自GaN Cgs、MOSFET Coss、MOSFET Qrr的有效Coss的增加,以及由于防止MOSFET崩溃而可能产生的一些电流导通,可能会在初始充电期间导致较高的漏端电流。较高的漏端电流会导致共源共栅驱动中的较高功率损耗。 在MOSFET的漏端充电至足以关闭GaN器件的程度后,从漏端观察到Coss突然下降——加上流经功率环路电感的漏端电流较高——导致共源共栅中开关节点的过度振铃组态。硬开关事件期间的开关波形如图2所示(橙色轨线=共源共栅驱动;蓝色迹线=直接驱动)。在此模拟中,即使直接驱动配置的压摆率较低且振铃较少(直接驱动在50 V/ns时为4.2 W,而共源共栅驱动在150 V/ns时为4.6 W,所有负载电流均为5A),直接驱动配置每次硬开关耗散的能量却更少。 另一方面,直接驱动配置在开关操作期间直接驱动GaN器件的栅极。无偏置电源时,MOSFET栅极被拉至接地,并以与共源共栅配置相同的方式关闭GaN器件。一旦存在偏置电源,MOSFET保持导通状态,其寄生电容和体二极管从电路中移出。直接驱动GaN栅极的优点在于可通过设置对GaN栅极充电的电流来控制压摆率。 image.png(17.41 KB, 下载次数: 0) 下载附件 保存到相册 4 分钟前 上传   图3:直接驱动配置的驱动路径模型 image.png(14.01 KB, 下载次数: 0) 下载附件 保存到相册 3 分钟前 上传     对于升压转换器,驱动电路的简易模型如图3所示。可使用该模型推导公式[1]。 等式1证明:当GaN器件具有足够的栅漏电容(Cgd)时,可通过使用栅极电流通过米勒反馈来控制开关事件的压摆率。对于低Cgd器件,将丢失反馈,且器件的跨导(gm)控制压摆率。 直接驱动配置的另一个优点在于可在栅极环路中增加阻抗,以抑制其寄生谐振。抑制栅极环路还可减少电源环路中的振铃。这降低了GaN器件上的电压应力,并减少了硬开关期间的电磁干扰(EMI)问题。 图2是一个模拟图,显示以功率和栅极环路寄生电感为模型的降压转换器中开关节点振铃的差异。直接驱动配置具有受控的导通,且过冲很少。而共源共栅驱动由于较高的初始Coss、Qrr和较低的栅极环路阻抗而具有较大的振铃和硬开关损耗。   集成栅极驱动的75mΩGaN器件 TI的LMG341x系列600V GaN器件是业界领先的集成GaN FET外加驱动器和保护功能的器件。它是一个8mm x 8mm四方扁平无引线(QFN)多芯片模块(MCM),包括一个GaN FET和具有集成20V串联FET的驱动。RDSON 的总电阻为75mΩ。 该器件的框图如图4所示。栅极驱动器提供GaN FET的直接驱动能力,并具有内置的降压-升压转换器,以产生关闭GaN FET所需的负电压。栅极驱动使用12V单电源供电,并具有一个内部低压差稳压器(LDO),可产生一个5V电源,为驱动和其他控制电路供电。内部欠压锁定(UVLO)电路使安全FET保持关闭状态,直至输入电压超过9.5V。一旦UVLO超过其自身阈值,降压/升压转换器就会接通并对负电源轨(VNEG)充电。一旦VNEG电源电压超过其自身的UVLO,驱动器便会启用驱动。 与分立的GaN和驱动器相比,LMG341x系列的集成直接驱动实现具有诸多优势。栅极驱动的一个重要方面是在硬开关事件期间控制压摆率。LMG341x系列使用可编程电流源来驱动GaN栅极。 image.png(55.66 KB, 下载次数: 0) 下载附件 保存到相册 3 分钟前 上传     图4:单通道600 V,76ΩGaN FET功率级的框图 电流源来驱动GaN栅极。电流源提供阻抗以抑制栅极环路,并允许用户以受控的方式对转换率进行编程,转换率从30 V/ns到100 V/ns,以解决电路板寄生和EMI问题。 通过将串联FET集成到驱动集成电路(IC)中,感测FET和电流感测电路可为GaN FET提供过流保护。这是增强整体系统可靠性的关键功能。使用增强型GaN器件时,这种电流检测方案无法实现。当大于40 A的电流流经GaN FET时,电流保护电路会跳闸。GaN FET在发生过流事件后的60 ns内关闭,从而防止裸片过热。 通过将驱动芯片封装在与GaN FET相同的裸片附着垫(DAP)上,驱动芯片处的引线框架可感测GaN器件的温度。驱动可通过在过热事件期间禁用GaN驱动来保护器件。集成的GaN器件还提供FAULT输出,通知控制器由于故障事件而停止了开关。 为使用直接驱动方法验证操作,我们建立了一个半桥板,并将其配置为降压转换器(图5)。此外,我们使用了ISO7831 双向电平位移器来馈送高侧驱动信号,并返回经过电平位移的FAULT信号。 image.png(53.02 KB, 下载次数: 0) 下载附件 保存到相册 3 分钟前 上传     图 5:典型的半桥配置 图6中,GaN半桥配置从480V总线、以1.5A的转换速率转换为100V/ns。蓝色迹线是开关节点波形,紫色迹线是电感器电流。 硬开关导通稳定,具有约50 V的过冲。此波形使用1 Ghz示波器和探头进行采集,可观察到任何高频振铃。快速的导通时间,外加减小的寄生电容和缺反向恢复电荷,使得基于GaN的半桥配置即使在使用硬开关转换器时也可高效开关。 image.png(169.14 KB, 下载次数: 0) 下载附件 保存到相册 57 秒前 上传     图 6:降压开关波形示例   总结 GaN在减小寄生电容和无反向恢复方面所提供的优势为使用硬开关拓扑结构同时保持高效率提供了可能。需要受控的高开关压摆率来更大程度地发挥GaN的优势,而这又需要优化的共封装驱动器和精心的电路板布局技术。 共封装驱动有助于更大程度地减少栅极环路寄生效应,以减少栅极振铃。 利用精心布置的印刷电路板(PCB),优化的驱动器可使设计人员以更小的振铃和EMI来控制开关事件的转换速率。这得益于GaN器件的直接驱动配置而非级联驱动配置。 LMG341x系列器件使设计人员能够以30 V/ns至100 V/ns的压摆率控制各类器件的开关。此外,驱动器还提供过流、过热和欠压保护。    

  • 发表了主题帖: Qorvo 如何实现的5G自屏蔽技术介绍

    5G 使得通信行业迎来重大变革,通信频段数量从 4G 时代开始就处于快速增长的状态,其中射频前端作为手机通信功能的核心组件,将直接受益。   从分立器件到 FEMiD(集成双工器的射频前端模块,Front-End Module with Integrated Duplexer),再到 PAMiD(集成双工器的攻防模块,Power Amplifier Module with integrated Duplexer ),射频前端集成化的趋势愈加明显。   相较于 FEMiD,PAMiD 集成度高,可节省手机内 PCB 的空间,又因其集成模块多,所以系统设计变得更易上手。Qorvo 通过将 LNA(低噪声放大器)集成到 PAMiD 中,实现了 PAMiD 到 L-PAMiD(带 LNA 的 PA 模块)的转变,使得射频前端模块的节省面积达 35-40mm*2,且支持更多的功能,让 PCB 的布局更为合理。   在射频前端,产生 EMI (电磁干扰)和 RFI (射频干扰)是常见问题,而且随着越来越多元件集成到射频前端模块,这种现象会更为常见。目前业内一般采用外置机械屏蔽罩对射频模块实施屏蔽,即嵌入金属外壳,以保护模块免受外部电磁场的影响。但这种做法可能会导致灵敏度下降以及谐波升高,对设备造成损害,带来很多设计上的风险。     针对以上问题,Qorvo 研发自屏蔽模块,即在模块表面添加一层自屏蔽金属镀层,可使表面电流减少 100 倍,相当于其射频前端模块自带屏蔽罩,无需再思考机械屏蔽罩的放置问题。     Qorvo 自屏蔽模块的推出帮助客户在设计手机 PCB 模块的过程中,不用担心机械屏蔽罩在 L-PAMiD 中造成不必要的耦合。目前,该技术主要应用于苹果、三星等一些高端手机中。   Qorvo 认为,射频前端模块的持续整合加上自屏蔽模块的应用将是未来射频前端的重要发展趋势。虽然当下 PAMiD 方面的成本较高,但随着 5G 时代快速发展,采用 Qorvo 自屏蔽技术的 L-PAMiD 将会被更多厂商所接受,未来在中低端手机中也会得到普及。   从 Qorvo 分享的 PAMiD/L-PAMiD 产品路线图中可以看出,目前 Qorvo 的产品全部同时集成了自屏蔽和 LNA,并支持 5G 频段。Qorvo 曾在财报会上表示,在 Fusion 20 产品组合方面,其零件是通用的,可以与当今市场上的所有 5G 基带一起使用,客户可根据自身需求自由搭配模组。     Qorvo 耕耘多年的氮化镓(GaN)工艺在 5G 建设中也大放异彩,Qorvo 应用于 5G 的 GaN 功率放大器系列布很宽,可支持 5G 不同的频率、不同的功率水平,满足不同客户的需求,该财季 Qorvo 的氮化镓收入比去年同期翻了一番。   这里把主要内容摘录给了大家,感兴趣的想了解更多内容点击阅读原文吧,希望对大家设计上有帮助。

  • 2020-08-10
  • 发表了主题帖: Wi-Fi滤波器技术知多少?

    常用滤波器技术是体声波(BAW)。它最适合1 GHz或更高的频率;由于Wi-Fi的频率范围为2.4GHz、5GHz,包括即将迎来的6 GHz,因此BAW技术在这些频率范围内均非常适用。 BAW具有卓越的插损性能,有助于将RF路径损耗降至最低。BAW的其它优势包括其陡峭的带缘和卓越的热耗散特性。 BAW滤波器采用固贴式谐振器(SMR)结构,与薄膜体声波谐振器(FBAR)等其它滤波器技术相比,散热效率更高。SMR BAW使用压电谐振器下方固体层组成的声学反射器;该固体层与下面的硅基板直接相连,从而使滤波器内产生的热量通过反射层有效地远离压电谐振器。因此,任何系统热量的增加对SMR BAW滤波器和系统性能的影响微乎其微,使其成为滤波器技术中的一个良好选择。 及时创建任何最终产品并保证其获得最终认证的关键,是在手边准备好所有所需工具;这些滤波器正是提供了这一点。通过在高度集成的RFFE解决方案中使用coexBoostt、bandBoost和edgeBoost滤波器,我们可以帮助工程师减少繁琐而耗时的设计。例如,使用QPF7219 2.4 GHz iFEM这类的即插即用解决方案可获得所有RFFE功能——省去了添加调谐和匹配元件的麻烦,也节省了采用分立方式结构时通常所需的时间。 以上内容摘录自“提升您对Wi-Fi滤波器技术的认识”  

  • 回复了主题帖: 数字信号处理器(DSP) – 机器视觉的应用

    科技发展太快啦。机器人视觉比人的都好。

  • 回复了主题帖: LoraWAN与LPWAN、Lora的关系

    讲的很清楚

  • 回复了主题帖: 使用MSP430™MCU智能模拟组合设计电流环路

    不错。

  • 发表了主题帖: IIoT 开启工厂车间之外的更多可能

    联网(IoT)和工业物联网(IIoT)已成为互联工厂的代名词,它们使传统工厂更加智能化,以获得更高效率所带来的收益。如今,工厂监控设备配置越来越普遍,诸如化学品储罐、泵设备、检漏设备或火灾防控设备等。IIoT的下一阶段会涉及工厂连接,并扩展到工厂范围之外。   将传统工厂车间之外的资产经济有效地集成到工厂控制基础设施中,无线电池供电的感测和控制起着至关重要的作用。当超出工厂原有范围时,为何电池供电的感测和控制具有重要意义?答案很简单:工厂通常会随时间(有时甚至是几十年)的推移而发展,电池供电的感测和控制功能则可将节点不受限制地置于工厂最初设计中可能从未想到的位置。电池供电的感测和控制节点无需专用的电源和通信线路。而传统情况下,如需将其扩展到原有工厂车间基础设施之外,就会需要电源和通信线材,从而导致部署困难和成本高昂。   为使电池供电的感测和控制切实可行地集成到工厂环境中,感测和控制节点必须能够在更长的时间范围内可靠运行,且无需更换电池或为电池充电。电池供电的感测和控制实现通常在其内核处具有诸如传感器、低压处理器和无线通信模块之类的元素,而所有这些元素都需要以极节能的方式进行操作。   这些内核组件通常需要选择可能不易于互相操作的器件。例如,在低压器件及其不同的工作模式中,不同的输入/输出(I/O)电压电平普通存在。低功耗传感器I/O处于有源状态时可在1.8 V下工作,但是在深度睡眠模式下,I/O可降至1 V以下,以节省电池寿命。类似地,处理器和通信模块的I/O电压电平可在有源操作期间以2.5 V的电压运行,然后在低功耗模式下降至更低的电压。   如何才能将感测和控制设计的内核组件整合,并仍然实现其低功耗功能呢?答案很简单:使用TI的AXC电平转换器系列之类的低功耗电平转换器器件。该器件不仅支持低功耗操作,还支持将I/O电平降至0.65 V(从3.3 V降至0.65 V)。AXC电平转换器器件能够在接口的内核组件之间实现低功耗电平转换,如串行外设接口、通用异步接收器发送器、通用I/O及任何其他推挽接口,也可以在这些器件超低功耗模式相关的低电压I/O电平间实现转换。AXC系列支持低至0.65 V电压电平的能力使无线电池供电的感测和控制应用进入可将I/O电平限制在1 V以下的省电模式。   AXC器件的位计数范围从1到8位不等,低位计数的单通道(SN74AXC1T45) 和双通道 (SN74AXC2T45、SN74AXC2T245) 器件采用极小型微型四方扁平无铅封装,有利于电路板IIoT感测和控制中常见的有限空间设计。图1所示为处于有源模式和睡眠模式的微控制器和传感器链路的示例,以及每种操作模式的示例I/O电平。 图1:有源和睡眠模式下的微控制器到传感器链路 图1所示的链路类型在许多工业传感应用中已经实现,如工厂自动化中使用的通信模块系统。SN74AXC2T245之类的器件可使传感器和微控制器在有源模式下高效运行,同时优化睡眠或低功率模式下的电源效率。在有源模式和静态模式下,SN74AXC2T245自身功耗也非常低。   AXC电平转换器系列可实现低电压和低功耗IIoT感测和控制节点。这些节点可扩展到工厂车间原始面积之外。

  • 2020-08-09
  • 发表了主题帖: UCC27211需要外加Boot二极管了的原因,你知道吗?

    本帖最后由 alan000345 于 2020-8-9 15:29 编辑 官方的EVM里面是加了这个boot二极管的,但实际上UCC27211自带这个boot二极管?内部有,外部增加并联,防止选择较大Qg的MOS, 瞬间充电电流过大。    

  • 回复了主题帖: MSP430中断的一个细节问题

    了解了解

  • 回复了主题帖: 基于波形捕获、用于超声波检测的方法

    谢谢,分享  

  • 2020-08-07
  • 发表了主题帖: 持续整合加自屏蔽-5G 射频重点

    5G 使得通信行业迎来重大变革,通信频段数量从 4G 时代开始就处于快速增长的状态,其中射频前端作为手机通信功能的核心组件,将直接受益。在手机领域,虽然今年预计手机销量将下滑 10%,但 Qorvo 认为,5G 手机射频端 5-7 美元的价值量增长可以抵消手机销量下滑的负面影响。   在射频前端,产生 EMI (电磁干扰)和 RFI (射频干扰)是常见问题,而且随着越来越多元件集成到射频前端模块,这种现象会更为常见。目前业内一般采用外置机械屏蔽罩对射频模块实施屏蔽,即嵌入金属外壳,以保护模块免受外部电磁场的影响。但这种做法可能会导致灵敏度下降以及谐波升高,对设备造成损害,带来很多设计上的风险。     针对以上问题,Qorvo 研发自屏蔽模块,即在模块表面添加一层自屏蔽金属镀层,可使表面电流减少 100 倍,相当于其射频前端模块自带屏蔽罩,无需再思考机械屏蔽罩的放置问题。   以上内容来自“Qorvo 谈 5G 射频:持续整合加自屏蔽将成为大趋势 ”你们觉得这个是未来的难点和趋势吗?    

  • 回复了主题帖: 图表了解MSP430F149比较器

    谢谢分享。

  • 回复了主题帖: 基于波形捕获、用于超声波检测的方法

    很好的资料,简单明了。

  • 发表了主题帖: 6678 SRIO: 关于QMSS,CPPI和SRIO Socket

    socket是SRIO LLD里的概念,跟网络的套接字类似。 The SRIO driver was designed such that the library could handle all communication protocols. The design was based on the well known BSD socket API which achieves the same by supporting the networking socket API over different protocol families i.e. IPv4, IPv6, IPX etc. From an application perspective; a SRIO socket is basically an endpoint which can be used to send and receive data. The SRIO socket abstracts the inner details of the SRIO peripheral from the end user.   下面是例程中device_srio_loopback.c的代码 /* Enable TLM Base Routing Information for Maintainance Requests & ensure that * the BRR's can be used by all the ports. */ CSL_SRIO_SetTLMPortBaseRoutingInfo(hSrio, 0, 1, 1, 1, 0); CSL_SRIO_SetTLMPortBaseRoutingInfo(hSrio, 0, 2, 1, 1, 0); CSL_SRIO_SetTLMPortBaseRoutingInfo(hSrio, 0, 3, 1, 1, 0); CSL_SRIO_SetTLMPortBaseRoutingInfo(hSrio, 1, 0, 1, 1, 0); /* Configure the Base Routing Register to ensure that all packets matching the * Device Identifier & the Secondary Device Id are admitted. */ CSL_SRIO_SetTLMPortBaseRoutingPatternMatch(hSrio, 0, 1, DEVICE_ID2_16BIT, 0xFFFF); CSL_SRIO_SetTLMPortBaseRoutingPatternMatch(hSrio, 0, 2, DEVICE_ID3_16BIT, 0xFFFF); CSL_SRIO_SetTLMPortBaseRoutingPatternMatch(hSrio, 0, 3, DEVICE_ID4_16BIT, 0xFFFF); CSL_SRIO_SetTLMPortBaseRoutingPatternMatch(hSrio, 1, 0, DEVICE_ID2_8BIT, 0xFF); 以上代码和port的配置是什么关系呢? 2. 手册的KeyStone Architecture Serial Rapid IO (SRIO)对于RapidIO Feature Support in SRIO中的描述中有Defined as Big Endian这一条,是否在DSP在接收的时候,比如自环,或者从fpga等设备接收还需要进行大小端的转换? 解答: 1. 主要是用来配置片内的inbound 的route路由的。可以参考一下附件SRIO编程手册。3323.SRIO_Programming_Performance.pdf 2. SRIO数据是big endian的。如果DSP工作在little endian模式的话,SRIO接口会把数据自动转换成big endian。FPGA那边如果是小端模式的话,需要转换成大端。    

  • 2020-08-06
  • 回复了主题帖: TI芯片奇怪的标注

    太有趣啦。

  • 回复了主题帖: TI MSP430 如何实现模拟串口通信

    不错的分享,谢谢

  • 2020-08-05
  • 回复了主题帖: WiFi 6 路由器带来的射频挑战?

    qwqwqw2088 发表于 2020-8-5 07:27 常见的需要做SRRC认证的产品有:无人机、VR眼镜、智能眼镜、智能机器人、智能主机、智能手表、智能摄像头、 ...
    谢谢分享,又涨知识了。

  • 回复了主题帖: 6G技术挑战、创新与展望

    不错的资料,有技术含量,期待6G

统计信息

已有411人来访过

  • 芯币:1618
  • 好友:3
  • 主题:487
  • 回复:1545
  • 课时:8
  • 资源:--

留言

你需要登录后才可以留言 登录 | 注册


杨风feeling 2019-9-9
您好,最近在做无线充电的项目,请问有资料或文献推荐吗?
查看全部