alan000345

  • 2019-10-21
  • 回复了主题帖: 射频电路基础知识

    不错的分享,有时间学学

  • 回复了主题帖: 请跟我来-DIY智能家居系统

    topwon 发表于 2019-10-21 15:58 1,零火无线开关的PCB设计有隐患,虽然使用了隔离式的开关电源模块,但是铺铜导致安全距离不够(光是开槽是 ...
    你说的太对啦

  • 回复了主题帖: 美信的MAX15066高效率DC-DC方案

    真的不错

  • 回复了主题帖: 基于msp430与数字血氧模块传感器,怎样在nokia5110LCD上显示出来

    跟着学习啦。

  • 发表了主题帖: 如何在电梯应急救助装置中使用双向DC/DC转换器来提高效率和降低成本

    本帖最后由 alan000345 于 2019-10-21 07:30 编辑 电梯每天都承担着运送百万人口的重任,因此确保其运行安全至关重要。你有没有想过当电梯的主电源断电时会发生什么?是从井道坠落,还是卡在两层之间?为了避免电梯坠落,故障安全制动机制可确保电梯轿厢在主电源断电时马上停止。在电梯轿厢停止之后,为了在电源恢复之前防止乘客被困于电梯内,自动救助装置(ARD)(也称为电梯应急电源)就可以发挥其作用。 ARD是一种备用电源装置,可以持续监控电梯电源。出现电网故障或线路故障导致电梯驱动的输入相位中断时,电梯就可能会意外停止。而ARD可以检测到此类故障情况,然后立即开始为电梯驱动供电,并向电梯控制器发送故障信号。之后控制器就会释放电机驱动制动器,缓慢地将轿厢移动到最近的层门。电梯轿厢的移动方向取决于在将轿厢移动到层门时哪个方向上所需的动力最小。一旦到达最近的楼层,电梯门就会打开,音频/视频指示灯指示可以安全离开。在预定的时间后,电梯门会再次关闭,然后电梯驱动的电源将关闭。 图1所示为从传统ARD到电梯系统的连接。三相电源通过电源接触器连接到牵引驱动装置。电源接触器与ARD接触器互锁在一起,可将ARD的输出连接至牵引驱动装置。互锁可以确保两个接触器不会同时打开,从而避免ARD输出电源发生短路。从电源分接的单相输出通过接触器为电梯系统的其余组件供电,如控制器、门机控制系统、制动器和安全链。接触器还与ARD的单相输出接触器互锁在一起。在正常运行期间,ARD为备用电池充电,其逆变器输出与电梯系统断开;电源关闭时可开启互锁接触器,ARD为电梯系统供电。 图1:电梯中的传统ARD系统连接 图2所示的ARD系统有一个可为电池充电的AC/DC充电器功率级。DC/DC转换器可以提高电池电压,而DC/AC逆变器产生交流输出为电梯牵引驱动和电梯控制供电。电路持续监测AC电源输入的断电和单相情况,并启用或禁用ARD内所需的功率级。 图2:传统ARD系统 另一种方法是使用双向DC/DC转换器,如效率大于93% 且适用于UPS 的2kW、48V 至400V 隔离式双向直流/直流转换器参考设计来实现ARD,如图3和图4所示。此类转换器可以从两个方向传递能量。在ARD中,转换器可直接连接至电梯牵引驱动的直流链路。在正常运行期间,转换器的工作原理和电池充电器相似,可从直流链路为电池充电。当没有主电源时,转换器可以像升压转换器一样工作,为电池的直流链路供电。ARD内的另一个逆变器级能够为控制产生单相AC电压。 图3:接入电梯系统的带双向DC/DC转换器的ARD系统 图4:带双向DC/DC的ARD 通过比较这两种方法,表1列举了双向DC/DC转换器方法如何提供更多益处。       参数 使用不间断电源(UPS)的传统ARD系统 带双向DC/DC转换器的ARD系统 转换器级数 三级: 采用AC/DC充电器为电池充电。 采用DC/DC转换器提高电池电压。 采用DC/AC逆变器为牵引驱动和电梯控制系统产生AC输出。 两级: 将一组AC/DC电池充电器和DC/DC升压转换器组合在单个双向转换器中。 采用DC/AC逆变器为电梯控制系统产生单相输出。DC/DC转换器被移除,且逆变器直接由直流总线供电。 效率 效率较低: 三个开关转换器级,带来更高损耗。 电池电源由ARD转换为交流电源,然后由牵引驱动的AC/DC整流器转换回直流链路电压。 效率高: 只有两个开关电源级。 双向转换器可直接连接至牵引驱动的直流链路。 成本 高: 需要互锁接触器(图1中用红色方框突出显示)向牵引驱动供交流电,并避免ARD输出与主电源短路。 ARD的输入和输出都需要三相接线。 需要三个转换器级,意味着物料单(BOM)成本更高。 低: 驱动电源不需要互锁接触器,因为双向转换器输出不可能与电源短路。 单相接线,更简单的接线方式。 BOM成本较低,可实现两个转换器       表1:比较传统ARD和带双向DC/DC转换器的ARD 电梯ARD的典型电池电压为24 V、36 V、48 V和60 V。三相400VAC电梯牵引驱动的标称直流链路电压大约为600 V。隔离双向DC/DC转换器参考设计为2-kW、48-V至400-V、由数字控制的双向功率级,可作为半桥电池充电器和电流馈送的全桥升压转换器在相反的方向上运行。通过简单地重新设计变压器和选择适当额定的MOSFET,该设计可扩展至不同的功率级和输入电池电压。

  • 发表了主题帖: 在洗碗机中设计和实现用户界面的新方法

    本帖最后由 alan000345 于 2019-10-21 07:25 编辑 曾经贵为“豪华家电”的洗碗机已经飞入寻常百姓家,成为了大多数家庭必备的厨房用具。虽然洗碗机的价格主要因其容量和品牌而异,但现在市面上已有不少产品拥有了不锈钢饰面和电容式触控接口等附加功能。 电容式触控技术正在改变消费者使用洗碗机的方式,也激发了设计师的创新能力。让我们来看看电容式触控技术提供了哪些全新解决方案,从而助力设计和实现用户界面、应对相关挑战。 金属表面电容式触控 许多洗碗机均采用金属表面,既美观又耐用。然而,在金属表面上实现人机界面是一项挑战,因为这需要在表面加工并切割出一个孔来放置机械按钮。除了影响外观设计,机械按钮在潮湿、多尘、以及脏乱的环境下还容易失灵。金属电容式触控是为了实现防水、防尘、耐磨和高度抗噪声的功能而设计的,拥有检测触控力度的能力。消费者甚至可以戴着手套灵活操作洗碗机。  与传统的电容式触控不同,采用CapTIvate™技术的 MSP430™微控制器使用另一种方法来实现金属触控应用(参见图1)。堆叠结构包括一个带有传统电容式触控传感器的印刷电路板,隔板和顶部接地的金属面板。这种机械结构形成了一个可变电容器,当消费者对接地的金属面板施加力时,该电容器的数值会发生变化。MSP430 MCU上集成的CapTIvate外设模块非常灵敏,可以检测微米级的金属形变。 图1:金属触控堆叠结构 温度和湿度漂移 现在大多数洗碗机产品都具有蒸汽和烘干功能,而电容式传感测量结果受温度和湿度等环境因素影响较大,温、湿度的变化可能会被系统误读为触控,因此有时会产生漂移现象。  为确保可靠运行,CapTIvate软件库以三种方式处理由温度或湿度引起的传感器测量结果的缓慢漂移: 长期平均值(LTA):通过IIR滤波跟踪与环境的不断变化相关的测量漂移。 触控阈值:随LTA成比例变化,而不是为了保持灵敏度而采用绝对偏移量的数值。 重新校准:如果IIR滤波功能,当LTA漂移到高于或低于指定转换计数八分之一之外时,则系统将重新校准,将传感器重新设置为指定的转换计数。 这三种方法协同工作,以确保系统不受温、湿度干扰,并在其整个生命周期内都按照预期设计运行。  不仅仅是电容式触摸控制器 为洗碗机用户界面设计选择合适的MCU也很关键,有了它就可以显著缩短产品开发时间、降低整体系统成本并节省PCB空间。 一个合适的电容式触摸控制器可以管理洗碗机设计中的许多系统功能:管理输出用户界面的背光LED驱动器,与系统中的其他传感器通信、监控系统状态以及进行自诊断。 图2:CapTIvate MCU产品组合  将所有功能集成到单个MCU中需要的不仅仅是固定功能的或独立的电容式触摸控制器。MSP430 CapTIvate MCU系列提供广泛的电容式触摸控制器产品组合(见图2),可根据您的系统集成要求进行扩展。

  • 2019-10-18
  • 回复了主题帖: 射频微波——Qorvo把这方面的材料诠释不错【砷化镓和氮化镓】

    又是QORVO的信息啊。

  • 回复了主题帖: (转)CC2640R2F BLE5.0 CC2640R2F硬件架构

    学习学习,好分享啊

  • 回复了主题帖: 基于BQ40z80的电量计电路设计原则

    gk18965 发表于 2019-10-15 09:37 感谢分享
    谢谢。

  • 回复了主题帖: 基于BQ40z80的电量计电路设计原则

    yedaochang 发表于 2019-10-15 10:13 分析得到位!
    谢谢,以后有好的资料一定多多分享给大家。

  • 回复了主题帖: 使用一根数据线控制全彩LED灯!单总线LED使用指南

    真心不错的分享啊、

  • 2019-10-17
  • 回复了主题帖: 老板 你家WIFI密码是多少?——Qorvo~Wi-Fi 6

    btty038 发表于 2019-10-15 08:49 最近科技巨头都在收购 天线和研发高频新产品
    是的,wifi6是以后的大趋势。

  • 回复了主题帖: 【GaN】 X波段 PW 150W功率放大器简述

    好东西啊,收下啦。

  • 回复了主题帖: 简简单单学TI 多核DSP(4):多核DSP TMS320C6678的BOOT方式(二)

    不错的分享啊。

  • 回复了主题帖: 分享LM2576电路的几个问题

    挺好的资料,喜欢,谢谢分享、

  • 2019-10-16
  • 回复了主题帖: 对LDO不了解,这个资料请收下!

    不错的分享,有营养,仔细看看。

  • 回复了主题帖: DC/DC转换中输入滤波电容发热问题

    大家都比较发愁发热问题,可这类电路都会发热,设计好了,发热小,能耗损失小,使用时间长,设计不好,就寿命低。

  • 2019-10-15
  • 发表了主题帖: 基于BQ40z80的电量计电路设计原则

    作者:Weng Iris 1.介绍 BQ40z80是完全集成的2-7节锂离子或锂聚合物电池管理芯片,采用已获专利的Impedance Track™技术,具备电流、电压和温度等全面的可编程保护功能。其硬件电路设计主要分为三个部分:主电流回路模块、电量计模块和保护模块。 2.主电流回路 主电流回路即指在电量计的控制下对电池进行充电、放电的电流回路。当充电时,该回路的电流从PACK+开始,经过用于控制充电和放电的开关FETs、化学保险丝、电池和电流采样电阻,最终回到PACK-。 2.1充、放电FETs 充、放电的两个N-CH FETs以漏极对接的方式串联在PACK+和电池组的正极,如图2-1所示,Q2、Q3分别是充、放电FET。当进行充电或放电时,Q2和Q3同时导通;当充电停止时,Q2关断;当放电停止时,Q3关断。   图2-1 充、放、预充、预放电MOSFET电路图 在进行FETs选型时应注意以下两点:(1)FET的额定电压值必须大于电池的最大电压;(2)考虑到放电时负载端产生反电动势的情况,放电FET的额定电压值应比充电FET稍大。   其驱动信号CHG和DSG上的栅极驱动电阻典型值分别为1kΩ和4.02kΩ,该阻值不同是由引脚内部结构决定的,使FETs的开通时间在几毫秒左右;FETs栅源间电阻典型值为10MΩ, 以确保栅极开路时FETs关断,避免误导通现象。   跨接在FTEs两端的电容C1、C2起到在ESD事件中保护FETs的作用,其两端路径应本着尽可能短和宽的设计原则,同时还应注意C1和C2的额定电压都应比系统相应最大电压更大,从而达到在某一个短路时另一个仍能起到保护作用的效果。 2.2预充、预放电FETs   预充电功能指当电池因过度放电、放置过久的自放电等原因导致两端电压过低时,若直接进入正常充电模式易损坏电池或影响电池使用寿命,此时需使用预充电功能,以小电流将电池充电至正常电压范围内后再转换为正常充电模式。它通过对P-FET的控制实现,预充电流的大小通过限流电阻R2=(VCHARGER-VBAT)/R2设定,同时兼顾对电阻上的热量消耗P=(VCHARGER-VBAT)2/R2的考虑。   预放电功能是指当电池应用于较大的电容负载时,启动瞬间易产生瞬间冲击电流,需先以软起的形式进行缓慢充电,从而减小瞬间大电流。如图1-1所示,来自Pins 16、17或20的驱动信号提供一个高电平使N-CH FET Q10导通,从而将预充电P-CH FET Q8的栅极接入地,使Q8导通,预充电回路打开,其预放电速率由限流电路设定。 2.3 防反接保护 充电器反接会对系统造成极大伤害,因此需为此设计相应的保护电路,如图2-2所示。   图2-2 反接保护电路 若无此保护,当PACK+上出现一个略小的负信号,放电FET将进入线性工作区,影响电路正常工作。但加入防反接电路后,PACK+上的负信号会使栅极接地的N-FET Q9导通,使放电FET的栅源极短路,从而起到保护作用。在选型时应选择具有较低Vgs(th)的N-FET,已达到可靠及时的保护效果。 2.4电芯输入 BQ40z80可以实现2-7节锂电池的管理和保护。对于2-6节的电池,芯片内部包含已集成的电压均衡模块,只需正常进行连接,未使用的Pins短接处理,例如图2-3所示在5节串联电池的应用中需将VC6与VC5短接。同时,每节电芯的输入应设计一个RC滤波电路,在起到ESD保护作用的同时,也可实现对输入电压信号实现初步滤波。考虑到该电阻处在电压均衡回路上,阻值选取应在内部电压均衡和滤波频率间进行均衡。 图2-3 5节电芯输入连接方式   对于7节电芯的电池则需进行额外的设置将电压均衡设置在外部,其连接方式如图2-4所示,其中,Pin VC7EN使能对7P的电压测量。 图2-4 7节电芯连接方式及其外部电压均衡模块 2.5电流采样电阻 通过由采样电阻所确定的回路电流值及方向是电量计的重要输入信号。BQ40z80内部有一个用于电流检测的集成Delt-sigma ADC,可实现的测量范围是-0.1V到0.1V。通过Pins SRP、SRN检测到的采样电阻两端的压降判断流经电池的电流,一方面用于判断系统处于充电还是放电模式,当检测到VSR=V(SRP)-V(SRN)为正值时,系统处于充电状态,反之处于放电状态;另一方面通过库伦计得到的积累电荷是电量计算的关键参数之一。   BQ40z80推荐的采样电阻阻值为1mΩ-3mΩ。对于大电流的应用场合,在确保可靠的开尔文连接的前提下支持并联采样电阻的方案。为防止短路情况下的大电流使电阻两端电压值超过Pins SRP、SRN的最大绝对输入值0.3V,两个100Ω的电阻R36、R37应串联接入采样信号。 图2-5 采样电阻开尔文连接 综上,如何确保较高的测量精度是设计采样电阻时的关键。应注意以下三点:(1)连接方式应选择开尔文连接,如2-5图所示;(2)电阻选型应注意使其温漂小于50ppm,以减小因温度变化引起的测量电流的漂移;(3)设计合适的滤波电路以减小噪声干扰,详见3.1节。 3.电量计 3.1库伦计接口 为了提高采样电流精度,除了对采样电阻的处理还可对输入信号的接口电路进行设计,如图3-1所示是为减小信号噪声而对采样信号设计的低通滤波电路。 图3-1 库伦计接口低通滤波电路 Pins SRP、SRN两端分别设置0.1μF的滤波电容C13和C14,以实现对100k-100MHz频率范围内的噪声的滤除作用,中间跨接的两个100pF和0.1μF的电容用于滤除高于100MHz的噪声。以上所有滤波元件都应放置在离输入端尽量近的地方,且采样电阻两端信号到滤波电路的路径应保持平行,最后,在滤波电路周围铺满地平面会对更良好的滤波效果有所帮助,如图3-2所示。 图3-2 库伦计接口滤波电路Layout方式   3.2电源管理 BQ40z80的供电系统包括三部分:来自电池的BAT、来自充电器的VCC和内部进行瞬间供电的PBI,据工作状态的不同对电源供应进行管理,如图3-3所示。 图3-3 BQ40z80供电管理系统   通常,由电池对设备进行初级供电,从正极经过一个输入端肖特基二极管引入至Pin BAT,输入范围为2.2-32V,该二极管可在因短路引起的暂态电压跌落的情况下将设备与电池迅速隔离开,由所用电池的最大电压决定,例如24V的电池选择40V的二肖特基极管。Pin VCC作为设备的第二级电源输入,连接在CHG和DSG的FETs共漏极,当电池处于电量较低的状态,若PACK上有充电器,设备检测到BAT的电压低于VCC时,将使用充电器的能量作为电源供应。最后,第三级电源供应来自Pin PBI,作为暂态失电的瞬间的能量后备,该引脚通过一个2.2μF的电容接入地,其瞬间的能量来源即该电容上储存的能量。   3.3系统检测   系统检测指BQ40z80通过Pin PRES*去检测PACK是否有充电器或负载的接入,该引脚通常接入地。设备内部通过一个典型值为10-20μA的电流源在该引脚每秒提供一个4μs的脉冲,为使该测试脉冲值低于VIL限制,应串联20kΩ或小于20kΩ的电阻,如图3-4所示。   图3-4 系统检测电路   同时,由于系统检测信号连接至PACK,为在外部静电放电时保护设备,BQ40z80的Pin PRES*内部已有集成ESD保护,仅需将一个1kΩ的电阻接入即可实现8 kV的ESD保护。   3.4 内部电压均衡   BQ40z80含有内部集成的电压均衡模块,可同时对每一节电芯实现最大10mA的均衡电流以达到电压均衡。   如图3-5所示,以两节电芯为例,当BQ40z80通过输入端的电压采样判断出某一节或多节电芯的电压异常时,将驱动内部旁路FETs,使其开通,在单节电芯的两端构成一个回路,所形成的旁路电流通过回路上的电阻将电芯两端异常的电压以热的形式消耗掉。因此,回路上的总电阻决定旁路电流的大小,即电压均衡的强度。     图3-5 内部集成电压均衡模块   电阻由两部分构成,第一是旁路FETs的导通电阻Rds(on)=200Ω,第二是电芯电压输入端的RC滤波电路。所以,每一节电芯的总旁路电阻为2×100+200 = 400Ω,若按一节电芯电压典型值为4V考虑,旁路电流约为10mA。需注意的是,电压均衡的实现过程并不是旁路FETs全导通直至均衡完成的过程,而是在每小时内以一定的占空比开启旁路FETs,对BQ40z80而言其典型值为75%,该值可通过软件进行修改。此时,对一节容量为2000mAh、SOC异常10%的电池,以占空比D去均衡则所需的时间t =2000mAh×10%/(10mA×D)。   3.5 外部电压均衡模块   BQ40Z80含有内部集成的电压均衡模块,能同时对每一节电芯实现最大10mA的均衡电流以达到电压均衡。若需要更快速度的电压均衡能力,则需进行外部电压均衡模块的设计,如图3-6所示。 外部N-MOSFETs采用具备低栅源驱动阈值电压Vgs(th)的。考虑到FETs的导通稳定性,此处将输入RC滤波电路中原100Ω的电阻改变为1kΩ。工作原理如下:当BQ40z80控制内部旁路FETs导通,形成内部旁路回路,其上两个1kΩ的电阻和FETs的导通电阻Rds(on)=200Ω构成一个分压比为0.454的电阻分压器。考虑一节电芯的典型电压范围为3-4.2V,当进行单节电芯的电压均衡将会经过分压在电阻上产生一个1.362-1.907V的电压信号,该信号即外部FETs的栅源驱动电压,因此N-MOSFETs导通,外部的旁路回路打开,旁路电流大小将由外部回路上的电阻决定,用户可根据需求设置。 图3-6 外部电压均衡模块   应注意的是外部旁路MOSFET选择原则是在考虑电路分压比的情况下使其具备尽量低的Vgs(th),以实现成功可靠的驱动,例如DMN2004DWK、NTZD3154N和Si1024X等。更多细节可参考应用技用文档,Fast Cell Balancing Using External MOSFET (SLUA420)。   3.6 温度   BQ40z80提供四个多达4个温度输入信号TS1、TS2、TS3和TS4,可同时用于电池、FETs等的温度检测,可通过软件配置其检测的对象类型和模式。Pins TS1、TS2、TS3和TS4内部都集成了典型值18kΩ的上拉电阻,可支持25℃下10kΩ的NTC热敏电阻(暂不支持PTC),应注意用于电池的温度检测则常采用引线式热敏电阻,便于贴合电池表面,对电池温度达到更好的监控效果。   4 针对大电流场合的应用   在一些特殊的应用场合,如电动车、飞机等,通常要求的放电电流较高。据此,以下提供一些关于如何针对大电流的应用场合对BQ40z80进行电路设计的方案可供参考。   4.1 FETs及采样电阻并联方案   针对大电流放电设计的关键点在于如何拓展主电流回路承受电流的能力,即包括该回路上的充放电FETs和电流采样电阻。当要求FETs通过较大电流时,考虑到散热压力及MOS的额定电流,推荐使用并联MOS方案。在选型时,首先应考虑驱动能力的限制而选取具备尽量小的Qg的开关管,同时兼顾大电流导通情况下散热和损耗压力而选择具备尽量小的Rds(on)的开关管。但对于并联MOS易于产生的均流问题还需进行额外的考虑,如Layout时在尽量使其驱动信号位置平行。   针对电流采样电阻,BQ40z80本身是支持并联方案的。在选型时,应结合所需求的电流值和Pins SRP、SRN的输入电压范围的考虑去选取合适的电阻值。同时,出于散热考虑对额定功率和封装的选择建议留有一定裕量。例如实现对100A电流的采样,选取两个1mΩ、额定功率3W、2512封装的电阻。但出于对于电流采样精度的考虑,并联方案下对保障可靠的开尔文连接是至关重要的。 4.2 并联驱动能力解决方案 显然,并联MOS方案存在的最大问题就是IC驱动能力有限制,BQ40z80的Pins CHG、DSG的驱动最大输出负载能力约为10μA,可参考该值及MOS的输入电容、导通电阻等对其驱动能力进行衡量。针对该问题有如下两个解决方向: 第一,在BQ40z80的Pins CHG、DSG能力范围内去选择Qg值满足可成功驱动、Rds(on)满足和散热需求的MOSFET,但需注意的是,普遍而言,这两个值具备一个相反的关系,需要进行衡量。另外,此时MOS开通时间会相应变长。例如若选取CSD18510Q5B,Qg=118nC,Rds(on)=0.79mΩ(Vgs=10V),在以3个并联的方式使用时,导通时间约14ms。 第二,当MOS的驱动需求超出BQ40z80的驱动能力或对开通时间有更高的要求的时候,可采用以下2种方式通过外加器件的设计增强电路驱动能力: (1)在Pins CHG、DSG的输出增加一个额外的三极管去增强其驱动能力,如图4-1所示,但此时需增加一个额外的输出值高于Vbat大约10V左右的DC-DC去完成三极管的电源供应,上拉电阻阻值也应根据MOS驱动电流的需求设计。 图4-1 BQ40z80及三极管驱动电路   (2)增加高侧N通道FET驱动器BQ76200(BQ76200)去增强其驱动能力,如图4-2所示,该设计下将避免加额外的DCDC的需求,BQ40z80的Pins CHG和DSG的输出信号不再直接驱动MOS,而是作为BQ76200的使能输入,使用后者去驱动MOS,从而解决驱动能力不足的问题。 图4-2 BQ40z80及BQ76200驱动电路   选择该设计方案时应需注意,BQ40z80的Pins CHG和DSG的输出电平分别以Vbat和PACK+作为基准,而BQ76200的使能输入是以VSS作为基准,两者之间的电压等级并不匹配,所以需要进行电平转换。对于BQ9006驱动输出的高电平,需要使用一个电阻分压器R1、R2对BQ40z80的输出电压进行变换,使其符合BQ76200的使能输入范围。同时,对于BQ006 输出的低电平,需通过一个P-FET确保只有当Pin CHG的输出高于Vbat时,P-FET导通,BQ76200才会通过电阻分压器得到的使能输入,避免误导通现象。P-FET的选取原则是其Vgs(th)约为10V左右,与Pin CHG的驱动输出相对应。   其次,还需关注电阻分压器的阻值选取,考虑到Pin CHG的输出电流能力极限约为10μA,输出电压约为Vbat+10V,R1、R2的总阻值应限制电流在其能力范围内。同时,也应考虑BQ76200的使能输入Pin CHG_EN内部含有的一个典型值约为1MΩ的下拉电阻对分压值的影响。   在实现电平转换的基础上,需对BQ76200在并联方案下的电路进行进一步设计。首先,BQ76200除了支持充放电FETs串联连接,还支持充电和放电分为两个单独的回路,即充放电FETs并联的连接方式。当应用场合放电和充电的电流等级相差较大,可考虑分别设计充电和放电回路,这样的设计可以有效减少充电FETs的数量。确定何种连接方式后,应根据所使用FETs具体情况计算其Pin VDDCP上的电容值,更多细节可参考技术应用手册FET Configurations for the bq76200 High-Side N-Channel FET Driver(SLVA729A)。   5 参考电路图

  • 回复了主题帖: 转——用二极管设计保护敏感射频电路及元件 免受大输入信号的影响

    基础知识都有,不错的分享。

  • 回复了主题帖: 讨论:射频高速PCB设计多少间距打一个GND过孔?【转】

    不错的分享,好文章。

统计信息

已有330人来访过

  • 芯币:1266
  • 好友:3
  • 主题:282
  • 回复:960
  • 课时:8
  • 资源:--

留言

你需要登录后才可以留言 登录 | 注册


杨风feeling 2019-9-9
您好,最近在做无线充电的项目,请问有资料或文献推荐吗?
查看全部