Jacktang

  • 2020-12-24
  • 发表了主题帖: D 类放大器的工作原理及拓扑结构

        本文将解释各种类型音频放大器之间的差异,详细介绍 D 类放大器的工作原理,并说明它们如何提高能效以及降低功率要求和缩小尺寸。     对于手持设备和便携式物联网设备而言,所采用的音频电路需要具有低功率、小尺寸和低散热的重要特性。但是,音频放大器通常是低效的发热器,需要笨重的散热器。为了缩小尺寸和降低功率要求,D 类或数字放大器提供了一种不错的解决方案。      D 类放大器之于音频播放的优点正如开关模式电源之于电源的优点。借助 D 类放大器,音频输入被编码为脉冲宽度调制 (PWM) 信号,可在开关电平之间驱动功率装置,并且仅在转换期间耗散功率。    这些“数字”放大器大大提高了音频放大器的能效,从而降低了散热,并缩小了物理尺寸。此外,最近的技术发展改变了调制方案,因此输出端不再需要低通滤波器,从而进一步缩小尺寸和降低复杂性。 模拟功率放大器     模拟功率放大器的发展一直侧重于提高保真度,同时提升放大器能效。根据工作点或偏置点以及导通时输入信号周期的百分比,放大器可分为 A、B、AB 或 C 类放大器(图 1)。 图 1:A、B、AB 和 C 类模拟放大器的工作偏压和信号传导。(图片来源:Digi-Key Electronics)      A 类放大器(左上)在输入信号的整个周期内导通。其偏置点位于输入-输出工作特性的中点。信号保真度出色,但由于放大器始终处于开启状态,即使没有输入信号,能效也通常较低。     B 类(左下)放大器旨在通过在截止频率下偏置放大器来提高能效。放大器仅导通半个输入周期。通常,电路配置为推挽拓扑,以放大正输入和负输入转换。在没有信号的情况下,放大器不会导通,从而提高了能效。由于在输入极性的转换点处可能发生交越失真,从而造成保真度损失,因此会抵消这一优势。 若要解决交越失真问题,可以稍微向上移动放大器的偏置点。这样就产生了 AB 类放大器(右上)。此类放大器通常也用于推挽式配置。AB 类放大器是音频电源应用中最常见的类型。     C 类放大器(右下)设计用于在输入周期的很小一部分上导通。它的特点是能效高,但保真度差。这些放大器适用于射频功率设计,其中输出负载是谐振电路,可恢复正确的波形。 有关提高这些模拟放大器能效的策略主要侧重于:将放大器的导通相位降至尽可能最短的持续时间,如 C 类放大器所示。 D 类基础知识 D 类放大器采用不同的方法,其工作方式与开关模式电源非常相似(图 2)。 图 2:D 类放大器将模拟输入转换为 PWM 波形,以完全打开或关闭 FET 开关。输出低通滤波器可恢复扬声器的模拟波形。(图片来源:Digi-Key Electronics) D 类放大器将输入模拟信号转换为脉冲宽度调制 (PWM) 波形。PWM 波形为每个脉冲完全打开或关闭推挽式 FET 输出级。当其中一个 FET 导通时,通过它的电流很高,但其上的电压非常低,因此仅在导通和关断状态之间的短暂转换期间消耗功率。同样,当该 FET 关断时,两端的电压很高,但电流接近零。此时,除了状态转换之外也没有功率耗散。 通过将模拟波形应用于比较器的一个输入,同时以所需开关频率将三角波形或斜坡波形应用于另一个输入,即可完成模拟波形到 PWM 波形的转换(图 3)。上方迹线代表输入波形,在本例中为 10 千赫兹 (kHz) 正弦波,其应用于比较器的一个输入。中间迹线是 250 kHz 三角波,其应用于比较器的另一个输入。比较器输出是下方迹线中显示的 PWM 波形。脉冲宽度随着输入信号的幅度而变化。 图 3:从模拟输入创建 PWM 信号需要输入信号(上方)和三角函数或斜坡函数(中间)。然后将两者应用于比较器的输入以产生 PWM 信号,其中脉冲宽度根据输入信号幅度(下方)而变化。(图片来源:Digi-Key Electronics) FET 推挽功率级的输出也是 PWM 信号。这适用于简单的电感器-电容器 (L-C) 低通滤波器,以恢复放大的模拟波形。三角波的频率必须远高于低通滤波器的转折频率。 PWM 的替代方案是脉冲密度调制 (PDM)。PDM 使用一系列短持续时间的矩形脉冲,脉冲密度会发生变化,与模拟输入幅度存在函数关系。它使用三角积分调制生成。 D 类放大器的增益受总线电压的影响。虽然电源抑制比欠佳,但可以通过使用放大器周围的反馈进行校正。此情形如图 2 的框图所示,其中反馈来自滤波器输入。 D 类放大器的主要优点是能效高达 90% 左右。这远胜于最接近的模拟竞争对手 AB 类放大器(能效为 50% 至 70%)。 高能效可实现更小的物理尺寸,并且可能无需使用散热器和冷却风扇。当应用于便携式设备时,更高的能效意味着更长的电池寿命。能效直接随输出功率水平而变化,并随功率下降而下降。 D 类放大器拓扑结构 D 类放大器通常使用两种拓扑结构,其中较为简单的结构是图 4 所示的半桥电路。 图 4:两种常用的 D 类拓扑结构是半桥和全桥配置。(图片来源:Digi-Key Electronics) 全桥拓扑结构称为桥接式负载 (BTL),其优势是在供电电压与半桥配置相同时,可提供更高的输出功率。半桥的滤波器输入在正或负电源轨间摆动,而 BTL 电路在正负轨之间具有负载,同时使应用到负载的电压翻倍,从而使功率输出翻了四倍。BTL 操作还允许使用单个单极电源。 无滤波 D 类放大器 借助称为 AD 调制的传统 D 类开关系统,占空比可调制矩形波形,使其平均值对应于输入模拟信号电压。BTL 输出相互补充。输出中没有明显的共模开关内容。但是,由于 PWM 开关的平均值缘故,存在共模直流电压。由于此直流电压电平应用到负载两侧,因此不会增加其两端的功率耗散。 在没有输入的情况下,放大器以其标称 PWM 频率开关,应用于负载的占空比为 50%。这导致负载中有明显的电流流动和功率耗散。为了提高能效,需要使用 L-C 滤波器将电流降低到“纹波”。由于减少了负载耗散和输出 FET 的 RDS(on) 导通损耗,因此纹波电流越低,能效越高。 一种替代调制方案(通常称为 BD 或无滤波器调制)使用开关系统来调制输出信号差异的占空比,以便使其平均值与输入模拟信号匹配。BTL 输出在待机时彼此同相,而不是互补。这导致负载两端的电压差为零,从而无需滤波器即可最大程度地降低静态功耗。BD 调制在其输出中具有明显的共模内容。该调制方案依赖于扬声器的固有电感和人耳的带通滤波器特性来恢复音频信号。 D 类放大器集成电路 Texas Instruments  TPA3116D2DADR 是一款 D 类立体声放大器,能效 > 90%,支持多路输出功率配置,其中包括 2 条到 21 伏、4Ω BTL 负载的 50 瓦通道。该系列中的其他型号支持 2 条到 24 伏、8 Ω 的 30 瓦通道,以及 2 条到 15 伏、8 Ω 的 15 瓦通道。只有最高功率装置才需要散热器。 这些装置支持高达 1.2 MHz 的开关频率,可避免 AM,以防止干扰。AD 或 BD 调制方案可通过单个输入控制进行选择。它包括集成自保护电路,包括过压、欠压、过热、DC 检测和短路,具有错误报告功能。下面使用 TI 的 TINA-TI 仿真工具显示了典型配置(图 5)。 图 5:TI TPA3116D2DADR D 类立体声放大器仿真,其中显示 BD 调制的原始 (VM3) 和滤波 (VM1) 输出波形。(图片来源:Digi-Key Electronics) 该电路使用单个 12 伏电源,输出功率为 12.5 瓦到 4 Ω。虚拟示波器显示原始数字输出 (VM3) 以及滤波输出 (VM1)。 Texas Instruments TPA3126D2DAD 是 TPA3116D2 系列的性能升级。该器件与旧式 IC 为引脚对引脚兼容,并采用专有混合调制方案,将待机电流降低 70%,从而实现了很大改进。该方案降低了低功率水平下的待机电流,从而延长电池寿命。 在设计 D 类放大器时,需要多加留意低功耗操作。如前所述,能效与功率水平成正比,而低功率水平通常意味着能效较低。Texas Instruments TPA2001D2PWPR 是一款属于第三代 D 类设计的每通道 1 瓦的立体声 D 类放大器。它具有更低的电源电流、更低的本底噪声和更高的能效。由于围绕 D 类无滤波器调制方案而设计,无需输出滤波器,从而为设计人员节省部件成本和板空间。它可以使用 5 伏电源提供到 8 Ω 的每通道 1 瓦以上的功率。 参考设计可用作评估板 TPA2001D2EVM,形成即插即用的 D 类音频放大器(图 6)。 图 6:基于 TPA2001D2 D 类放大器的每通道 1 瓦的立体声放大器。(图片来源:Texas Instruments) 该放大器采用 BTL 拓扑结构,基本为自足式,仅需少量外部元器件。 总结 对于便携式和电池供电设计,D 类放大器以小封装提供低损耗和极高的功率效率。现成的 IC 可以快速方便地应用这些放大器,并且最近的技术进步减少了对滤波器的需求,使它们成本更低和更紧凑。

  • 发表了主题帖: 如何使用漏斗放大器来放大电流测量?

    准确的电流测量并不像电压测量那么轻松,当试图测量的电流流过与相对较高的电源电压相连的负载时,这种测量会变得更加困难。电流检测电阻器也称为分流电阻器,因测量精度高、温度系数低、成本相对较低,已经成为测量电流的首选技术。由于这种电阻器的阻抗低,通常必须对其两端的较低电压进行升压。此项任务通常由在低压侧或高压侧配置中连接的电流检测放大器来完成。 不过,当负载由电压相对较高的电源驱动时(例如:工业控制应用),检测电阻器可以大得多,而不会从负载争夺过多的驱动电压。与流过低阻抗分流电阻器(数值通常以毫欧姆或微欧姆计)的检测电流所产生的电压相比,这些增加的电阻会产生大得多的电流检测电压。在从电机控制到功率转换之类高功率工业应用中,这些检测电压通常可以高达几伏。 这种检测电压往往需要进行衰减和电平位移之后,才能应用于通常采用单极 3 V 或 5 V 电源供电的模数转换器 (ADC)。衰减和电平位移信号调节链有时也称为漏斗信号链,因为检测到的电压信号在通过 ADC 的信号调节链时会逐渐变窄。降低或收窄这些检测电压的传统方式是使用无源衰减法,但也可以使用差分漏斗放大器,这种方法在减少元件数量的同时可以提高测量精度。 漏斗放大器可以执行多达三项信号调节任务: 在模拟前端 (AFE) 信号链的末端,将检测到的电压衰减到 ADC 可接受的电平。 根据需要执行电平转换(电平位移),例如在高压侧检测设计中。 可以具有驱动全差分 ADC 所需的差分输出。 设计人员如果需要测量数百伏级极高共模电压上的小信号,请参阅 Art Pini 的文章“测量高电压上的小信号,并避免传感器接地回路”。 高压侧与低压侧检测概览 如图 1 所示,最常见的电流监控信号链配置包括分流电阻器、AFE、ADC 和系统控制器。运算放大器或专用电流检测放大器将分流电阻器两端产生的小差分电压转换为 ADC 所需的更大输出电压。 图 1:最简单的电流测量方法是使用分流电阻器(最左侧),该电阻器自身产生的电压与流经它的电流成正比。检测放大器对信号进行调节,使其符合 ADC 的输入要求。(图片来源:Steve Leibson) 低压侧电流测量将分流电阻器放置在有源负载和接地之间。低压侧电流测量更容易实现,因为分流电阻器两端的检测电压以接地为参考。然而,低压侧的测量配置具有明显的缺点:分流电阻器位于负载和接地之间,这意味着负载不以接地为参考。此外,无法检测负载到接地之间的潜通路上的漏电电流。 高压侧电流测量将分流电阻器插在电源和有源负载之间。图 2 展示了用于进行低压侧和高压侧电流测量的电路。 图 2:低压侧电流测量电路将电流检测电阻器放置在有源负载和接地之间,而高压侧测量电路则将电流检测电阻放置在电源和负载之间。(图片来源:Steve Leibson) 与低压侧电流测量相比,高压侧电流测量具有两个关键优势: 通过潜通路可以轻松检测到负载内部对接地产生的短路,因为产生的短路电流将流过分流电阻器,在其两端形成检测电压。 高压侧电流测量不以接地为参考,因此流过系统接地平面的大电流所引起的差分接地电压不会影响测量。 高压侧电流测量也有一个明显缺点:检测电压叠加在相对较大的共模电压之上。 无论是低压侧测量还是高压侧测量,在高电压和大电流下运行的负载所产生的检测电压很容易超过输入电压额定值,甚至超过用来将检测电压转换为数字值的 ADC 电源轨。这种情况下需要某种衰减。此外,检测电压取决于高压侧测量的大电压偏移量,通常高达数十甚至数百伏。这些情况下需要进行电平转换,使得检测电压处于 ADC 的额定输入电压范围内。 漏斗放大器内部集成了出厂前已经过微调的高匹配电阻器,可设置精确的电压增益和偏移。与基于分立式、非匹配电阻器的设计相比,这些内部电阻器具有更好的性能和更高的精度,同时减少了元件数量。最后,这些电流检测应用中使用的高性能 ADC 可能具有差分输入,因此某些漏斗放大器拥有差分输出功能,可以正确地驱动这些差分 ADC。 介绍两种漏斗放大器 Analog Devices 的 LT1997 漏斗放大器(LT1997-2 和 LT1997-3)以及 AD8475 全差分漏斗放大器都是配有全集成精密电阻器的实例。所有这三个器件均可用于执行类似的信号调节任务,但各自的功能差别很大。 其中两款 LT1997 增益可选的漏斗放大器属于衰减(漏斗)差分放大器,可将较大的差分信号转换为能够与 ADC 输入兼容的较低电压范围。两个 LT1997 漏斗放大器均在一个芯片上集成了一个精密运算放大器和一组高度匹配的内部电阻器。这两个器件无需额外的外部元件,便可进行精确的电压衰减和电平位移。图 3 是一个展示采用 DFN 封装的 LT1997-2 放大器的元件的内部示意图,图 4 是采用 MSOP 封装的 LT1997-3 放大器的内部示意图。 图 3:LT1997-2 放大器包含多个精确匹配的电阻器,这些电阻器可以组合在一起,产生多个高精度的小数增益和衰减。(图片来源:Analog Devices) 图 4:LT1997-3 放大器包含多个精确匹配的电阻器,这些电阻器可以组合在一起,产生多个高精度的小数增益和衰减。(图片来源:Analog Devices) 请注意,尽管这两个器件的架构非常相似,零件编号也很接近,但电阻值有很大差别。另请注意,MSOP 封装将连接至 DFN 封装内 REF 引脚的内部电阻器分割成两个与引脚 REF1 和 REF2 相连的较大电阻器。 当采用并联连接时,两个封装中的电阻相同,不过,MSOP 封装的这一功能允许将这两个电阻器连接到电源轨,从而在内部放大器的正输入端建立精确的中点电压基准,且无需额外的元件。LT1997-2 和 LT1997-3 MSOP 封装中均存在这种分离式电阻器配置。 为了产生各种放大器增益,可以连接 LT1997 的内部输入电阻器。为了实现漏斗化任务,可通过连接输入电阻器,来产生多种用于形成漏斗放大器的衰减设置。表 1 列出的是使用 LT1997-2 放大器的内部正输入电阻器可实现的 38 种小数衰减设置,而表 2 列出的是使用 LT1997-3 的内部正输入电阻器可实现的 30 种设置。 表 1:LT1997-2 放大器的精确匹配型正输入电阻器可以组合使用,以产生多个精确小数衰减级别。(表格来源:Analog Devices) 表 2:LT1997-3 放大器的精确匹配型正输入电阻器可以组合使用,以产生多个精确小数衰减级别。(表格来源:Analog Devices) 表 1 和表 2 显示了只使用 LT1997-2 和 LT1997-3 漏斗放大器的内置电阻器便可实现的多种精确衰减可能,但这并不是它们的全部功能。此外,还可以使用其他内部电阻器对放大器增益进行编程,然后用衰减乘以增益,得出放大器的输出。当然,如果内部电阻器所实现的衰减/增益组合都不适合总体设计要求,也可以为电路添加外部精密电阻器。然而,使用外部分立式电阻器缺乏内部电阻器所具有的出厂严格匹配优势。 LT1997-2 和 LT1997-3 漏斗放大器可在较宽的共模输入电压范围内运行(可以比器件的负电源轨高出 76 V)。通过在分压器配置中使用器件的内部输入电阻器,LT1997-3 的模拟 INA 输入可由高达 ±160 V 的电压安全驱动,LT1997-2 的 INA 输入则可由高达 ±255 V 的电压驱动。 内部电阻器的严格匹配可使两个器件实现极高的共模抑制比。这种能够适应具有较高共模电压的信号的极端能力,依托的就是 Analog Devices 称之为“Over-The-Top”的操作能力。当器件处于 Over-The-Top 模式时,可通过削弱其他规格(包括线性度、输入偏置电流、输入失调电流、差分输入阻抗、噪声和带宽)来承受极端共模电压。此功能看似需要削弱很多参数,但好处是,它能处理对其他运算放大器致命的输入电压。 LT1997-2 和 LT1997-3 放大器均具有规格书中列出的全部规格,可在 5 V 单端电源和 ±15 V 电源下运行,此外,这两种器件也可在 3.3 V - 50 V 的更宽供电电压范围内运行。最后需要注意的是,LT1997 放大器具有单端输出。 全差分漏斗放大器Analog Devices 的 AD8475 全差分漏斗放大器可提供 0.4 或 0.8 的精密衰减能力、共模电平位移以及单端信号到差分信号转换,并具有输入过压保护功能(图 5)。该器件包含一整套 AFE 构件,包括经过匹配的激光微调输入电阻器和一个精密差分放大器。该放大器可用于将工业级信号连接到低电压、高性能 16 或 18 位单电源 SAR(逐次逼近)ADC 的差分输入端。AD8475 放大器可使用单电源处理 ±10 V 信号,当在单个 5 V 电源下运行时,还可提供相对输入电压高达 ±15 V 的过压保护。 图 5:Analog Devices 的 AD8475 全差分漏斗放大器使用经过匹配的内部激光微调电阻器,提供 0.8 和 0.4 的引脚可编程增益。(图片来源:Analog Devices) AD8475 具有两个标准增益选项:0.4 和 0.8。使用与目标增益对应的输入引脚可设置该器件的增益。 AD8475 漏斗放大器的大电流差分输出级能够让放大器驱动许多 ADC 的开关电容器前端电路,且误差很小。此外,压摆增强型 AD8475 的高速输出使其能够稳定至 18 位精度,实现快至每秒 4 兆次的采集率,因而可以测量高速电流(进而测量功率)。该放大器的差分输出可轻松驱动 SAR、ΣΔ 和流水线型 ADC 的输入。 图 6 显示的 AD8475 放大器将差分输入驱动到 Analog Devices 每秒 1 兆次采样的 18 位、低功耗 AD7982 ADC。 图 6:AD8575 漏斗放大器的差分输出可直接驱动像 Analog Devices AD7982 这样的 ADC 的差分输入。(图片来源:Analog Devices) 该差分输入 ADC 由单个电源供电。三个正弦波形描述了该电路执行漏斗放大器可以执行的所有三种信号处理任务的示意图:衰减、电平位移和差分驱动。请注意,位于图中间顶部和底部的两个正弦波的相位差为 180°。这两个波形展示了 AD8475 放大器的差分驱动能力。 图中左下方 Analog Devices 的 ADR435 超低噪声 XFET® 电压基准为该电路生成了精确的 5 V 基准电压。 图 6 中的电路可适应来自电流检测电阻器的双极 ±10 V 的交流输入信号摆动。此电路可对输入信号进行衰减和电平位移,最终使用以 2.5 V 直流偏移为中心的 4 V 峰峰信号摆幅来驱动 ADC 的输入,以匹配 AD7982 ADC 的输入要求。由两个 10 千欧 (kΩ) 电阻器组成的分压器(如图中右下角所示)可为 AD8475 的 VOCM 输入引脚产生 2.5 V 偏移基准电压,用于设置该放大器的输出电压偏移。设计工程师可利用此功能接入设计中所用 ADC 需要的精确偏移电压。 总结 许多工业应用都以相对较高的电压来驱动负载。这种情况下,高压侧电流测量电路的模拟前端必须能够接受通常大于其供电电压的输入信号电压。而处理这样的输入电压需要进行信号衰减和电平位移。漏斗放大器专为这类信号调节任务而设计,它集成了经过工厂匹配的精密型激光微调电阻器。 此外,配有差分输出功能的漏斗放大器还可轻松驱动高速 ADC,这些 ADC 带有开关电容器前端电路,具有非常特殊的驱动要求。

  • 发表了主题帖: 常见积分器应用:信号处理、传感器调节、信号生成、滤波

            在电子世界走向数字化之前,基于微分方程求解的控制系统使用模拟计算来解方程。因此,模拟计算机相当普遍,因为几乎所有微分方程的求解都需要对信号进行积分运算的能力。虽然控制系统大多都已实现数字化,并且数值积分也已取代模拟积分,但在传感器、信号生成和滤波的运算方面,仍然需要模拟积分器电路。这些应用使用基于运算放大器的积分器,并在反馈回路中带有电容元件,以便为低功耗应用提供必要的信号处理。 尽管实用性仍然很重要,但许多设计人员可能会轻易忽略。本文概述了积分器电路,并以 Texas Instruments 的几个产品为例,就正确设计、元器件选择和最佳实践提供指导,以实现卓越性能。 基本反相积分器 经典的模拟积分器采用运算放大器,并且以电容器作为反馈元件(图 1)。 图 1:基本反相模拟积分器包含一个运算放大器,并且在反馈路径上有一个电容器。(图片来源:Digi-Key Electronics) 积分器的输出电压 VOUT 是输入电压 V IN 的函数,可以使用公式 1 计算。 公式 1         基本反相积分器的增益系数是 -1/RC,该系数可应用到输入电压积分。实际上,积分器所用的电容器应具有小于 5% 的容差和低温度漂移。聚酯电容器是一个不错的选择。在关键路径位置应使用公差为 ±0.1% 的电阻器。             该电路存在局限性,因为在直流下,电容器代表开路,增益会无穷大。在工作电路中,根据非零直流输入的极性,输出将传输到正电源轨或负电源轨。这可以通过限制积分器的直流增益来纠正(图 2)。 图 2:在反馈电容器上并联一个大电阻可限制直流增益,从而得到一个实用的积分器。(图片来源:Digi-Key Electronics)         在反馈电容器上并联一个高阻值电阻器 (RF),可将基本积分器的直流增益限制为 -RF/R 值,从而得到一个实用的器件。这种添加法解决了直流增益问题,但却限制了积分器的工作频率范围。观察真实电路有助于理解此限制(图 3)。 图 3:使用真实元器件的实用积分器 TINA-TI 仿真。(图片来源:Digi-Key Electronics)          该电路使用 Texas Instruments 的 LM324 运算放大器。LM324 是一款优异的通用运算放大器,具有低输入偏置电流(典型值 45 nA)、低失调电压(典型值 2 mV)和 1.2 MHz 的增益带宽积。电路输入由仿真器的函数发生器以 500 Hz 的方波驱动。这在仿真器示波器上显示为上方迹线。电路会对方波进行积分,并输出一个 500 Hz 的三角函数,如示波器的下方迹线所示。         直流增益为 -270 kΩ/75 kΩ 或 -3.6 或 11 dB;这从电路的传递函数可以看出,如图 3 的右下网格所示。从约 100 Hz 至约 250 kHz,频率响应按 -20 dB/十倍频程滚降。这是积分器工作的有用频率范围,并且与运算放大器增益带宽积有关。 Texas Instruments 的 TLV9002 是新近推出的运算放大器。这款 1 MHz 增益带宽放大器具有 ±0.4 mV 的输入失调电压和 5 pA 的极低偏置电流。作为一款 CMOS 放大器,它适用于各种低成本便携式应用。         对于设计人员来说,务必要记住,积分器是一种累积器件。因此,如果没有适当的补偿,输入偏置电流和输入失调电压会导致电容器电压随着时间的推移而增加或减少。在此应用中,输入偏置电流和失调电压相对较低,并且输入电压会迫使反馈电容器定期放电。 在使用累积功能的应用中,例如在测量电荷时,在积分器中必须有一种机制来重置电压并建立初始条件。Texas Instruments 的 ACF2101BU 就具有这种机制。它是一款双开关积分器,集成了一个内置开关以对反馈电容器放电。由于该器件适用于需要电荷累积的应用,因此具有 100 fA 的极低偏置电流,典型偏置电压为 ±0.5 mV。 Texas Instruments 的 IVC102U 是一款类似的开关积分器/跨阻放大器。该器件与 ACF2101BU 的应用范围相同,但不同的是,每个封装包含单个器件。此外,还具有三个内部反馈电容器。其中包含对电容器组放电和连接输入源的开关,因此设计人员能够控制积分周期并包括保持操作,以及对电容器上的电压放电。 非反相积分器 基本积分器将信号的积分反相。虽然与基本积分器串联的第二个反相运算放大器可以恢复原来的相位,但也可以在单级中设计一个非反相积分器(图 4)。 图 4:基于差分放大器运算放大器配置的非反相积分器可以确保输出相位与输入相位匹配。(图片来源:Digi-Key Electronics)         非反相版本的积分器使用差分积分器来保持输出与输入信号同相位。这种设计额外增加了无源元器件,应对其进行匹配以实现最佳性能。输入和输出电压之间的关系与基本积分器相同,只是符号不同,如公式 2 所示: 公式 2 通过使用传统的运算放大器电路,可以实现对基本积分器进行其他调整。例如,可以添加多个电压输入(V1、V2、V3…),只要通过各自的输入电阻(即 R1、R2、R3…)加到运算放大器的非反相输入。此加法积分器的最终输出使用公式 3 计算: 公式 3 如果 R1=R2=R3=R,则使用公式 4 计算输出: 公式 4 输出是输入之和的积分。 一些常见的积分器应用         过去,积分器一直用于微分方程求解。例如,机械加速度是其速度的变化率或导数。速度是位移的导数。积分器可用于获取加速计的输出并对其进行一次积分运算,以读取速度。如果速度信号进行了积分运算,则输出就是位移。这意味着通过使用积分器,单个传感器的输出可产生三个不同的信号:加速度、速度和位移(图 5)。 图 5:使用双积分器,设计人员可以从加速计产生加速度、速度和位移读数。(图片来源:Digi-Key Electronics)         加速计的输入经过积分和滤波,得到速度。速度经过积分和滤波,可得到位移。请注意,所有输出均为交流耦合。这样一来,就不再需要处理每个积分器的初始条件。 函数发生器 函数发生器可输出多种波形,可以由多个积分器构成(图 6)。 图 6:使用三个 LM324 级设计的函数发生器。OP1 是产生方波的张弛振荡器;OP2 是将方波转换为三角波的积分器;OP3 是另一个积分器,用作低通滤波器以消除三角波的谐波,从而产生正弦波。(图片来源:Digi-Key Electronics)         函数发生器围绕 LM324 设计,而 LM324 是前面讨论的实用积分器。在该设计中,使用了三个 LM324 运算放大器,如 TINA-TI 仿真所示。第一级 OP1 用作张弛振荡器,并以 C1 和电位计 P1 确定的频率产生方波输出。连接的第二级 OP2 为积分器,将方波转换为三角波。连接的最后一级 OP3 为积分器,但用作低通滤波器。该滤波器去除三角波中的所有谐波,并输出基频正弦波。每级的输出显示在图 6 右下方的仿真器示波器中。 罗氏线圈         罗氏线圈是一类电流传感器,其利用缠绕在被测载流导体上的柔性线圈测量交流电源。它们用于测量高速电流瞬变、脉冲电流或 50/60 Hz 线路功率。 罗氏线圈执行的功能类似于电流互感器。主要区别在于罗氏线圈使用的是空芯,而不是电流互感器中使用的磁芯。空芯具有较低的插入阻抗,从而在测量大电流时响应更快且没有饱和效应。罗氏线圈非常易于使用(图 7)。 图 7:简化示意图显示了罗氏线圈在载流导体上的安装(左)和此设置的等效电路(右)。(图片来源:LEM USA)         罗氏线圈如 LEM USA 的 ART-B22-D300,简单地缠绕在载流导体上,如图 7 左侧所示。罗氏线圈的等效电路如右图所示。请注意,线圈的输出与被测电流的导数成正比。积分器可用于提取感测到的电流。         罗氏线圈积分器的参考设计如图 8 所示。此设计的特点是具有 0.5 至 200 A 范围的高精度输出(精度为 0.5%),以及相同电流范围的快速建立输出(不到 15 ms 时间内的精度在 1% 以内)。 图 8:此罗氏线圈积分器的参考设计使用 Texas Instruments 的 OPA2188,作为设计积分器元件中的主运算放大器。(图片来源:Texas Instruments)         此参考设计使用 Texas Instruments 的 OPA2188,作为设计积分器元件中的主运算放大器。OPA2188 是一款双运算放大器,采用专有的自动调零技术,最大失调电压为 25 微伏 (µV),并且时间或温度漂移接近于零。增益带宽积为 2 MHz,典型输入偏置电流为 ±160 pA。         对于该参考设计,Texas Instruments 选择 OPA2188 的原因是低失调和低失调漂移。而且,低偏置电流可最大程度地减小罗氏线圈上的负载。 滤波器中的积分器         积分器在状态变量和双二阶滤波器设计中都有使用。这些相关的滤波器类型使用双积分器来获得二阶滤波器响应。状态变量滤波器是一种更有趣的滤波器,因为单个设计会同时产生低通、高通和带通响应。该滤波器使用两个积分器以及一个加法器/减法器级,如 TINA-TI 仿真所示(图 9)。图中显示了低通输出的滤波器响应。 图 9:状态变量滤波器使用两个积分器和一个加法器/减法器级,以从同一电路产生低通、高通和带通输出。(图片来源:Digi-Key Electronics) 这种滤波器拓扑的优势在于,在设计过程中可独立调节所有三个滤波器参数(增益、截止频率和 Q 值)。在此示例中,直流增益为 1.9 (5.6 dB),截止频率为 1 kHz,Q 为 10。 高阶滤波器的设计通过串联多个状态变量滤波器来实现。这些滤波器通常用于模数转换器前的抗混叠,其中要求高动态范围和低噪声。 总结         尽管有时候世界似乎已经全数字化,但本文讨论的示例表明,模拟积分器在信号处理、传感器调节、信号生成和滤波方面,仍然是非常有用和通用的电路元件。

  • 发表了主题帖: 问:共模线圈选择时的电感值如何来定?

    答:根据需要抑制的频率,利用共模电感的电感量和Y电容的谐振频率来确定,实际中还要考虑元件分布参数和板的布局,所以很多是开始大概确定一个值,后面通过预测,再确定,与经验有很大关系。有的资料上有介绍和开关电源的频率有关系:50KHZ约30MH,75KHZ约15MH,100KHZ约10MH。实际中电感量不是越大越好,我以前也是这种错误的认为,电感量越大,匝数越多,分布电容越大,高频下反而不利,绕组电感是要尽量减小分布电容。共模电感的电感量往往和Y电容的容量一起考虑,电容容量大,电感的电感量就可以小,但是电容的容量不能过大,与安规要求的漏电电流大小有关系。 共模电感设计:设计共模电感时还要注意磁芯材质的选择,具体根据实际需要来确定,不是Br越大越好,和工作温度和带宽都有一定的关系。实际中由于两个绕组不完全对称,还存在漏感,漏感是好处可以抑制差模干扰,不利是方面要注意不要出现磁饱和,由此可见漏感的存在是矛盾的,从抑制差模干扰来看是越大越好,从避免磁饱和来看是越小越好,个人认为是小好,抑制差模干扰可以用差模滤波器来完成,实际用要想漏感小可以用磁环,但是电感量不能做到很大,要漏感大点可以用EE和U型磁芯。根据实际需要可能用两个不同电感量是共模滤波器来抑制不同 的频率。关于线径的选取,可以按照电流密度4-8A/平方毫米来选取,电流的大小和输出功率,电源效率,PF值有关:I=Po/η/PF/Vi。

  • 发表了主题帖: 无源滤波电路

    无源滤波器缺点:带负载能力差,无放大作用,特性不理想边沿不陡峭,各级互相影响。 RC滤波        1, C值的选取:C不能选的太小,否则负载电容对滤波电路的影响很大,一般IC的输入电容往往有l~lOpF的输入电容。C值选的太大,则会影响滤波电路的高频特性,因为 大电容的高频特性一般都不好。        2, R值的选取:R值过小会加大电源的负载,R值过大则会消耗较多的能量。        RC滤波电路的最大缺陷就是他不仅消耗我们希望抑制的信号能量,而目也消耗我们希望保留的信号能量。另外由于受电容高频特性的限制也不能用在太高频的场合,例如数MHz以上需要用LC滤波器。   1.  电容滤波电路 分析电容滤波电路工作原理时,主要是用到了电容器的隔直通交特性和储能特性。前面整流电路输出的脉动性直流电压可分解成一个直流电压和一组频率不同的交流电,交流电压部分就会从电容器流过到地,而直流电压部分却因电容器的通交隔直特性而不能接地才流到下一级电路。这样电容器就把原单向脉动性直流电压中的交流部分的滤去掉了。 另外电容滤波电路也可以用电容储能特性来解释,当单向脉动直流电压处于高峰值时电容就充电,而当处于低峰值电压时就放电,这样把高峰值电压存储起来到低峰值电压处再释放。把高低不平的单向脉动性直流电压转换成比较平滑的直流电压。 滤波电容的容量通常比较大,并且往往是整机电路中容量最大的一只电容器。滤波电容的容量大,滤波效果好。电容滤波电路是各种滤波电路中最常用一种。 电源滤波电容如何选取,掌握其精髓与方法,其实也不难。 1)理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的SFR参数,这表示频率大于SFR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地,可以想想为什么?原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容虑低频,小电容虑高频,根本的原因在于SFR(自谐振频率)值不同,当然也可以想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了。 2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少?就算我知道SFR值,我如何选取不同SFR值的电容值呢?是选取一个电容还是两个电容?电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个,1)器件Data sheet,如22pf0402电容的SFR值在2G左右, 2)通过网络分析仪直接量测其自谐振频率,想想如何量测?知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比。仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB。 电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好。但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:ω=1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性。因而一般大电容滤低频波,小电容滤高频波。 这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高。 至于到底用多大的电容,这是一个参考:                          电容谐振频率 电容值       DIP (MHz)      SMT (MHz)  1.0μF           2.5                 5  0.1μF            8                  16  0.01μF          25                 50  1000pF         80                 160  100 pF         250                500  10 pF           800               1.6(GHz)  不过仅仅是参考而已,用老工程师的话说——主要靠经验。更可靠的做法是将一大一小两个电容并联,因为大电容高频特性差,小电容高频特性好。一般要求相差两个数量级以上,以获得更大的滤波频段。   2.  电感滤波电路 电感滤波电路的原理也和电容器滤波差不多,也是因为电感器的通直阻交特性和储能特性。从储能方面来解释的话和电容器是一样的原理,从通直阻交特性方面来解释电感器的滤波电路时,电感器是把单向脉动性直流电压分解出来的交流电压部分进行阻碍,而电容器却是短路接地。电感量越大滤波效果越好,由电感器单独作滤波电路的情况很少,一般会和电容一起组合使用。   3.  L形RC滤波电路 L形RC滤波电路就是在普通电容滤波电路中电容器前面加个电阻器,电阻器是串联在电路中,而电容器是并联在电路中,这时电阻器和电容器形成了的L字形状,所以称它们为L形RC滤波电路。它的滤波原理和滤波效果都和普通电容滤波电路是差不多,这时电容器和电阻器也构成了分压电路,因为电容的容抗很小,所以对交流分量的分压衰减很大,这样交流量通过电容器短路接地,达到滤波的目的。对于直流电压部分,由于电容器对直流电呈隔离状态,这时电容器对电阻器没有分压作用,直流不会流过电容器。在这种滤波电路中,如果电阻器的阻值不变时,加大滤波电容的容量可以提高滤波效果,滤波电容的容量越大越好。如果滤波电容的容量不变,加大电阻器的阻值也可以提高滤波效果,但是滤波电阻的阻值不能太大,因为滤波电阻的阻值太大的话,直流输出电压就会变小。 LC滤波主要是电感的电阻小,直流损耗小。对交流电的感抗大,滤波效果好。缺点是体积大,笨重。成本高。用在要求高的电源电路中。 RC滤波中的电阻要消耗一部分直流电压,R不能取得很大,用在电流小要求不高的电路中。RC体积小,成本低。滤波效果不如LC电路。 LC滤波一般用在高频电路或电源电路上中 而RC用在低频电路中  LC滤波器应用的频率范围为1kHz~1.5GHz.由于受限于其中电感的Q值,频率响应的截至区不够陡峭。 1, RC滤波器相对于LC滤波器来说,更容易小型化或者集成,LC相对体积就大多了; 2, RC滤波器有耗损,LC滤波器理论上可以无耗损,所以电源部分电路一般都是LC电路; 3, RC比LC的体积要小,成本要底; 4, RC用在低频电路中,LC滤波一般用在高频电路中; 5, RC滤波中的电阻要消耗一部分直流电压,R不能取得很大,用在电流小要求不高的电路中.RC体积小,成本低.滤波效果不如LC电路; LC滤波主要是电感的电阻小,直流损耗小.对交流电的感抗大,滤波效果好.缺点是体积大,笨重.成本高.用在要求高的电源电路中. 6, 滤波级数越多效果也好,但是带来的是损耗和成本越高,所以不建议超过3级; 7, RC滤波器一般常与运算放大器组合使用,构成有源滤波器,多作为低频信号的滤波。例如,在锁相环路中作为环路滤波器使用   4.  π形RC滤波电路 首先从结构上来讲,这种滤波电路是由两个电容器和一个电阻器组成,它实际上就是L形滤波电路中电阻器前面再加个电容器接地就成了π形RC滤波电路。两个电容同时进行滤波作用,后面一个滤波电容可以把前面电容未滤完整的直流电压进一步滤波,这样两个电容同时进行滤波,滤波效果当然是更加理想。可以加大第一只滤波电容的容量来提高滤波效果,但第一只滤波电容的容量不能太大,因为刚开机接通电源时,第一只滤波电容容量太大的话充电时间会太长,这一充电电流是流过整流二极管的,当充电电流太大、持续时间太长时,会损坏整流二极管,所以采用这种π形RC滤波电路时,可以使第一只电容容量略有减少,通过调整后面的L形RC滤波电路来提高滤波效果。   5.  多节π形RC滤波电路 多节π形RC滤波电路就是在普通π形RC滤波电路后面再接一个L形RC滤波电路形成多节π形RC滤波电路。其滤波原理和上面普通π形RC滤波电路一样,只是这种滤波电路会有多个直流电压输出端,越是后面的输出端的直流电压滤波效果越好。第一个滤波输出端电压最高,最后一个滤波输出端电压最低,这主要是因为各节电阻器都有电压降。多节π形RC滤波电路是整机电路中用得最多一种滤波电路。   6.  π形LC滤波电路 这种滤波电路与普通π形RC滤波电路在结构上基本上是一样的,只是将电阻器更换成电感器而已。因为电阻器对直流电和交流电存在相同的电阻,而电感器对交流电感抗大,对直流电感抗小,这样既可以提高交流滤波效果,还不会降低直流输出电压,因为电感器对直流电不存在感抗,不会像电阻器那样对直流电也存在电压降。电感器的通直阻交特性是这种滤波电路的最大优点,但是电感器的成本高所以这种滤波电路没有π形RC滤波电路使用得多。

  • 2020-12-23
  • 发表了主题帖: 以ADP1055为例改善动态环路响应

    DC-DC 转换器通过反馈控制系统,将不断变化的输入电压转换为(通常)固定的输出电压。反馈控制系统应尽量保持稳定,以避免出现振荡,或者发生最糟糕的情况:输出未经调节的输出电压。控制系统的速度应尽可能快,以响应动态变化(例如快速的输入电压变化或输出端的负载瞬态),并最大程度降低经调节的输出电压之间的压差。要表现控制环路的行为,可以使用典型的波特图来显示随频率变化的相移和环路增益。此控制环路可以使用模拟或数字技术实现。     图 1.全桥应用中的 ADP1055 数字开关稳压器 有些数字电源提供控制环路优化,可以极快地对动态影像做出响应。图 1 显示带 ADP1055 控制器 IC 的电路示例,该电路已经受数字控制环路优化。数字控制器为设计人员提供诸多控制功能,有些甚至能在操作期间实施动态控制。图 2 显示可通过 ADP1055 评估软件控制的 ADP1055 的各种功能。 图 2.数字电源使得设计人员能够通过图形用户界面,轻松管控电源参数 非线性增益 / 响应函数提供了一项与控制环路相关的极为有趣的设置选项,该设置通过滤波器按钮访问。非线性增益 / 响应支持对控制环路实施动态调节,例如,在负载瞬变之后。电源在经历很大的负载瞬变之后,其输出电压通常会高于或低于理想的整流电压值。在仅采用模拟器件的控制环路中,控制环路和电源功率级中的组件被用于最大程度降低电压在大部分可预期情况下的波动。动态可调节控制环路(例如 ADI 公司的 ADP1055 中的环路)的优势在于:可以立即调节环路的响应,以在差异甚大的各种情形下实施补偿。 图 3.根据输出电压状态设置控制环路增益 图 3 显示控制此函数的界面。图中用蓝色表示输出电压在经历由高至低的负载瞬变后的典型行为。可以看出,稳压器输出端的电压响应通常会出现过冲。当输出电压超过某些阈值时,可以通过简单增加控制环路增益来最大程度降低过冲。 在图 3 的示例中,设置的标称输出电压为 12 V。可调控制环路增益可以设置为多个值,具体由输出电压决定。例如,如果因为误差放大器的增益增加,使得电压升高至 12.12 V 以上,则可以在对应的下拉菜单中设置控制环路。还有三个其他的电压阈值高于 12.12 V,可以使用独立的增益设置。注意,这些增益设置与在设计稳压环路时设置的极点和零完全无关。 通过可调、基于电压的增益设置可以查找更快响应电压过冲的控制环路设置,由此优化输出电压反馈控制的质量。注意,正常工作时,经优化的控制环路特性不会受到影响。可以使用数字控制器(例如 ADI 公司的 ADP1055)在特定条件下(例如在经历负载瞬变之后)动态调节控制环路,但在使用传统的模拟控制环路时,则很难实施。

  • 发表了主题帖: Qorvo的射频前端技术创新引领5G终端发展

         5G时代,终端成为各行业关注的焦点。终端是最接近用户的部分,直接影响用户的5G体验。而在智能终端中,射频前端模块先行,射频前端模块的技术创新推动了移动通信技术的发展。在5G时代的潮流中,射频前端模块也在进行着新一轮的技术革新。Qorvo作为射频前端模块领域的重量级玩家之一,在射频前端模块上进行了全面技术更新。       5G时代的到来为智能手机带来了新的增长机会,据Strategy Analytics近日发布的最新报告显示,今年一季度全球5G手机需求大涨,其首季出货量超过去年的1870万部,达到至2410万部。       巨大的5G手机市场增量给射频前端的发展创造了机会。据了解,无线通信模块包括了天线、射频前端模块、射频收发模块和基带信号处理器四个部分。其中射频前端和天线是属于量价均升,需求量急剧扩大的领域。同时,在5G时代,信号频段数量大幅增加,随之需要的组成部件数量也大幅增加,同时5G通讯设备需要向下兼容4G和3G,因此增量市场相当可观。       但是机遇伴随着挑战,5G智能手机的发展为半导体产业带来了新一轮的技术变革。5G时代,移动设备能够使用的频段逐渐增多,这也意味着需要增加更多的射频元件。射频前端器件的数量增加导致手机内 PCB 空间紧张,工艺难度提升,这也导致射频前端的复杂性呈指数级增长。      关于射频前端设计遇到的挑战,“5G射频前端的设计难度比4G要大得多。一是5G手机要向下兼容2G、3G、4G,需要支持的频段增加;二是5G设备集成的器件更多,对产品尺寸提出了新的要求;三是5G手机对线性度、EVM等性能要求大大提高。所以5G射频前端的设计难度大大增加。” LNA集成到PAMiD已成趋势       为了解决5G时代射频前端遇到的诸多挑战,射频企业开展了深入的研究工作。随着射频前端模块技术的成熟以及市场的需求,自2016年以来,市场中主要的射频前端都开始向模块化方向发展,双工器、天线开关等几大模块开始被集成到射频前端中。期间,射频前端模块也发展出了数种类别,包括ASM、FEMiD、PAMiD等。其中,目前模组化程度最高的是PAMiD,主要集成了多模多频的PA、RF 开关及滤波器等元件。对于手机厂商来说,PAMiD的出现让射频前端从以前一个复杂的系统设计工程变得更加简单。       而伴随着 5G 时代的来临,手机所需的PAMiD也正在持续进行着整合。Qorvo 作为全球射频领域的佼佼者,其利用高度集成的中频/高频模块解决方案,已经为多家智能手机制造商提供了广泛的新产品发布支持。 “Qorvo致力于发展集成化的PAMiD方案,把PA、滤波器,开关,甚至LNA(低噪放)也集成进去。致力于给客户提供更简单、性能更好、更适应他们产品的解决方案。”        对于PAMiD的未来发展前景,Qorvo认为,将LNA集成到PAMiD中是推动射频前端模块继续发展的重要动力之一。有报道指出,随着5G商业化落地,智能手机中天线和射频通路的数量将显著增多,对射频低噪声放大器的数量需求会迅速增加,而手机 PCB 却没有更多的空间。在这种情况下,将LNA集成到PAMiD中成为了行业的一种发展趋势。Qorvo表示,从PAMiD 到L-PAMiD,射频前端模块可以实现更小尺寸,支持更多功能。 RF自屏蔽技术将在5G时代发挥更大的作用      Qorvo对射频前端进行的创新不止是将LNA集成到PAMiD,Qorvo还推出了Micro Shield自屏蔽技术。 “自屏蔽的技术可以进一步的改善手机板上设计的时候相互干扰的问题。一方面可以节省很多客户在手机设计时的工作量,另一方面,它也可在一定程度上排除机械的屏蔽罩对器件的影响。”      据了解,蜂窝发射模块对手机内的任何元件来说都将产生辐射功率,从而可能诱发 EMI 和 RFI干扰,这就需要 RF 屏蔽技术来降低 EMI 及 RFI 相关的辐射。在过去,射频前端模块采用外置机械屏蔽罩的方式进行 RF 屏蔽,但采用外置机械屏蔽罩的方式可能会导致灵敏度下降,也可能会导致谐波升高。5G 时代的到来,手机 PCB 的空间变得越来越紧张,更小的模块设计成为了手机元件未来发展的方向之一,因此用 RF 自屏蔽技术来代替厚重的机械屏蔽罩成为行业潮流。在这种市场需求下,Qorvo所推出的Micro Shield自屏蔽技术的优势凸显。       Qorvo推出的Micro Shield自屏蔽技术,是在模块的表面再涂一层合金,取代原来外置的机械屏蔽罩,以起到屏蔽干扰信号的作用。据相关报道显示,最早一代的 Micro Shield 技术可将当时RF的高度和体积分别降低 15% 和 25%。这也使得采用 Micro  Shield 技术的手机制造商能够在更小的板级空间上,获得更高的 RF 性能。 “在最近的生产实践中,我们也在逐步地改善目前这种选择性的屏蔽技术,让它的质量和工艺稳定性更好,实现量产。我相信将来还会有更多的产品采用这种技术。”      Micro Shield自屏蔽技术将在5G时代发挥更大的作用。结合5G时代的集成化趋势来看,Micro Shield自屏蔽技术将有助于L-PAMiD的进一步发展。伴随着5G时代对L-PAMiD需求的增加,如果外置机械屏蔽罩设计不正确,L-PAMiD的灵敏度将会受到严重的影响。因此,受惠于5G时代的来临,Micro Shield自屏蔽技术的价值将得以放大。经过优良设计的自屏蔽模组,能够将LNA区域的表面电流减少100倍。 技术创新将向中低端手机延伸     从Qorvo在射频前端的发展路线图来看,将LNA集成到PAMiD中以及采用自屏蔽技术将是手机射频前端模块未来发展的两个重要方向。       但由于技术创新尚未实现大规模量产,就目前市场情况来看,PAMiD是高度整合的定制模组,虽然它能够带来足够高的性能体验,但由于其成本高,因此也仅有少数厂商选用。同样,Micro Shield自屏蔽技术也是由于成本原因,而往往仅被高端手机所采用。但是伴随着 5G 时代的到来,采用 Micro Shield 自屏蔽技术的 L-PAMiD 显然能够为厂商带来更大的价值,这也就意味着这种射频前端模块在中低端手机领域还有很大的发展空间。       伴随着 Micro Shield 自屏蔽技术在工艺上的改进,Qorvo指出,这种技术的成本有望进一步降低。同时,L-PAMiD 的成本也会随着技术的成熟而降低。按照这种发展趋势,采用Micro Shield自屏蔽技术的L-PAMiD将会逐渐被中低端手机所接受。Qorvo预计,在今年下半年,市场中就会有中低端手机采用这种射频前端模块。

  • 发表了主题帖: 什么是共模抑制比CMRR

    CMRR(Common Mode Rejection Ratio)共模抑制比。   在电子学中,差分放大器(或其他装置)的共模抑制比(CMRR)是一个度量,用于量化装置抑制共模信号的能力,即那些同时出现在两个输入端且同相出现的信号。一个理想的差分放大器将有无限的共模抑制比,但这在实践中是无法实现的。当差分信号必须在可能存在较大共模输入(如强电磁干扰(EMI))的情况下放大时,需要高CMRR。例如,在扩声或录音中,音频通过平衡线传输。   理想情况下,差分放大器差分电压V+和V-,在其两个输入端并产生输出电压Vo=Ad(V+ - V-)。Ad—差分增益   然而真实差分放大器输出电压为:   Acm—共模增益,通常远小于差分增益   CMRR定义为差分增益与共模增益之比,以正分贝为单位   由于差分增益应超过共模增益,因此这将是正数,越高越好。   CMRR是一个非常重要参数,因为它表示您的测量中会出现多少共模信号。CMRR的值通常也取决于信号频率,并且必须指定为其功能。   在降低传输线噪声方面通常很重要。例如,在嘈杂环境中测量热电偶的电阻时,来自环境的噪声在两个输入引线上都显示为偏移,使其成为共模电压信号。测量仪器的CMRR确定应用于偏移或噪声的衰减。

  • 发表了主题帖: 如何设计RTC电路

    RTC(Real_Time Clock)为整个电子系统提供时间基准,MCU、MPU、CPU均离不开RTC电路设计,在设计、应用RTC单元时,常常会发现延时、超时或者功耗过大现象,如何解决RTC精度以及功耗问题呢?本文将为您介绍时钟芯片PCF8563应用设计,并给出相应的解决方法。   一、什么是RTC   实时时钟(Real_Time Clock)简称为RTC,主要为各种电子系统提供时间基准。通常把集成于芯片内部的RTC称为片内RTC,在芯片外扩展的RTC称为外部RTC,PCF8563是一款低功耗的CMOS实时时钟/日历外部芯片,支持可编程时钟输出、中断输出、低压检测等,与处理器通过I2C串行总线进行通信,总线速率可达400kHz。   二、RTC精度设计   RTC的主要职责就是提供准确的时间基准,计时不准的RTC毫无价值可言。目前部分MCU在片内已集成RTC,实际测试中在电池供电6小时环境下片内RTC的偏差在1-2分钟。因此,若对实时时钟有较高的要求则需优先考虑外扩RTC,同时要求时钟精度更高的RTC,比如PCF8563,表1所示是不同RTC的时钟精度对比。   表1  常见RTC时钟精度对比   1)电路设计   RTC设计电路简约而不简单,时钟芯片的选择、晶振的选择、电路设计、器件放置、阻抗控制、PCB走线规范均会影响RTC的时间基准的稳定性, 图 1为RTC芯片PCF8563电路设计。   图1  PCF8563参考电路图   2)晶体对地电容容值选择   负载电容Cload= [ (Ca*Cb)/(Ca+Cb) ]+Cstray,其中Ca、Cb为接在晶体两引脚到地的电容,Cstray为晶体引脚至处理器晶体管脚的走线电容(即杂散电容总和),一般Cstray的典型值取4~6pF之间;如要满足晶体12.5pF负载电容的要求,Cload= [ (15*15)/(15+15) ]+5=12.5pF。     图2  常见时钟电路   3)PCB布线   由于RTC的晶振输入电路具有很高的输入阻抗,因此它与晶振的连线犹如一个天线,很容易耦合系统其余电路的高频干扰。而干扰信号被耦合到晶振引脚导致时钟数的增加或者减少,考虑到线路板上大多数信号的频率高于32.768kHz,所以通常会发生额外的时钟脉冲计数,因此晶振应尽可能靠近OSC1 和OSC2引脚放置,同时晶振、OSC1 和OSC2的引脚布成地平面,具体PCB布线如图3所示。     图3  PCB布线   4)电路相关说明   如图1所示,R56、R57为 I2C 总线上拉电阻,PCF8563中断输出及时钟输出均为开漏输出,所以也需要外接上拉电阻,如图1中的的R58、R59,若不使用这两个信号,对应的上拉电阻可以不用。   对于PCF8563芯片,需外接时钟晶振32.768kHz (如图1的 X1),推荐使用±20ppm或更稳定的晶振。PCF8563典型应用电路推荐使用 15pF的晶振匹配电容,实际应用时可以作相应的调整,以使RTC获得更高精度的时钟源。一般晶振匹配电容在15pF~21pF之间调整(相对于±20ppm精度的 32.768kHz晶振),15pF电容时时钟频率略偏高,21pF电容时时钟频率略偏低。   5)精度调整方法   1.设置PCF8563时钟输出有效(CLKOUT),输出频率为32.768kHz;   2.使用高精度频率计测量CLKOUT输出的频率;   3.根据测出的频率,对 CB1、CB2、CB3作短接或断开调整,频率比32.768kHz偏高时,加大电容值,频率比32.768kHz偏低时,减小电容值。   说明:图1中的 C41、C42、C43的值在1pF~3pF之间,根据实际情况确定组合方式,以便于快速调整,推荐使用(3pF、3pF、3pF)、(1pF、2pF、3pF)、(2pF、3pF、4pF)。   三、RTC低功耗设计   很多RTC设计成可以只依靠一块电池供电就能工作,如果主电源关闭,仅依靠一小块锂电池就能够驱动振荡器和整个时钟电路,如何降低RTC电路工作时功率消耗?   通过应用几种不同的方法可以降低RTC功耗:   选择低功耗的RTC,比如PCF8563,表2所示是不同RTC的功率消耗对比     表2  常见RTC功率消耗对比   RTC电源切换电路中,选择漏电流小的二极管比如BAV74,当系统电源电压3.3V断开时,BT1锂电池CR2032(3V/225mAh)通过二极管向RTC供电;     图4  RTC电源切换电路   尽量少而且合理地访问RTC,减少I2C总线的动态电流;   将 I2C 总线的上拉电阻设计得尽量大些,比如10k;   在应用时,通过设置寄存器关闭RTC的时钟CLKOUT输出。

  • 2020-12-22
  • 发表了主题帖: 49元的NB-IOT定位器爆款单品如何打造?

    NB-IOT定位器是一个统称,可以是电动车Tracker、宠物定位、资产风控、学生胸卡等等,为什么要用要NB-IOT,有几个原因: NB-IOT优势! 一、功耗 2G退网,CAT1接力,但CAT1的功耗依据是硬伤,可能是使用一周还是使用一天的区别,如果是资产风控,定位频率没那么高,时间可以更长。 二、成本 NB-IOT价格已经快接近2G,从频段考虑,CAT1很难做到这样的成本,预计未来大概在30元左右。 三、移动性 R13的NB-IOT的移动性是一个硬伤,但R14有提升,是可以满足大部分定位场景的需求。 四、政策 今年 1 月NB-IoT全球连接数突破 1 亿、2月中国连接数突破 1亿。华为预计,全球连接数到今年年底将再次翻番,到 2025 年,NB-IoT 芯片出货量将快速达到 3.5 亿,在整个蜂窝物联网芯片出货量中会占近 50%,前景广阔。 NB-IOT问题! 一、网络覆盖 NB-IOT的网络覆盖目前看还有很大问题,但好在市区都可以完成覆盖,另外国家政策趋势,NB-IOT覆盖会日益完善。 二、延时 实时性的反馈会带来更好的体验,低端一些的消费类产品,实时性追求可以放宽。 宠物定位器为例 功能定义 1、10-30分钟上报一次数据(APP设置) 2、蓝牙可以支持本地连接,第一次配置 3、支持蓝牙防丢定位 4、APP设置走失,GPS开启实时定位 5、可以监测电池电量,反馈APP 第一版产品定义:分立方案 蓝牙(同时当MCU) GPS NB-IOT 电量采集IC 第一版BOM成本超过50元,还不算外壳、天线、电池、流量费用等。 第二版产品定义:集成方案 AM21E (支持GPS+蓝牙+NB-IOT+eSIM) 1、蓝牙可以实现本地联系,不支持蓝牙定位,改为根据信号强度,做简单判断,省去蓝牙成本 2、AM21E可以OPEN CPU,放弃蓝牙也不需要集成MCU 3、根据调取模组电源接口电压,结合电池曲线图,可以做简单的电量测量,省去电量计量IC的成本 通过集成方案,总bom成本控制在37-38 另外一个好处,产品尺寸大大缩小(省去蓝牙及外围电路+卡槽的尺寸) 第三版产品定义:Costdown方案 AM21E V5 (COSTDOWN版本) 好处,总bom成本在32-33 坏处,不支持蓝牙 总结: 除bom之外的费用 外壳:1-2元 电池:2元 流量费用:移动6元,也可以采购到3-4元的 天线:3元(蓝牙另外) 生产安装测试:3-5元 如果做好供应链,第二版本应该可以做到50以下,第三版本45元左右。 第二版本和第三版本如何选择? 1、可以分为高低档2个版本,虽然bom差的不多,但售价可以有区别 2、第二版板适合宠物定位,第三版本适合资产追踪,适用不同的场景

  • 发表了主题帖: 一套完整的智能家居系统,包括哪些设计方案

    第一章 智能家居需求分析 1、什么是智能家居 智能家居又称智能住宅,即Smart Home。智能家居是以住宅为平台,利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术将家居生活有关的设施集成,构建高效的住宅设施与家庭日程事务的管理系统,提升家居安全性、便利性、舒适性、艺术性,并实现环保节能的居住环境。 2、智能化家居未来趋势: 此智能家居系统,采用集中智能控制技术,结合当今国际计算机、通讯、控制、互联网等领域的最新科技。充分满足智能家庭的实际需求的家庭智能化系统根据国内智能化现状,为用户量身订制安全、舒适、便利的生活环境。将高新科技引入家庭,大大提升住宅的使用价值,为住户营造现代化的美好家园,为发展商创造价值。 3、智能家居能做什么: 清晨起床时间一到,卧室音响设备就会自动播放主人爱听的"起床曲"唤醒主人;浴室里的电灯也会随着主人进入梳洗时自动亮起,厨房的煮咖啡器也会自动煮水,等主人出来时就会有热腾腾的咖啡等着他;在客厅里,主人只需要轻按综合功能遥控器,就可以十分方便地通过家庭影院系统播放电视节目。当主人出门后,智能化系统会自动启动安全保卫系统,当主人开车进出车库时车库门自动开关…… 这些正如美国好莱坞所描述的场景并非全是科学幻想和虚构, 家居智能控制系统在美国和发达国家已相当普遍.那么它到底能为我们做些什么呢? 智能家居是以家为平台,兼备自动化,智能化于一体的高效、舒适、安全、便利的家居环境。家居智能化技术起源于美国,现已遍及全球。智能家居不再是一幢被动的住宅,相反,成了帮助主人尽量利用时间的工具,使家庭更为舒适、安全、高效和节能。您在外忙碌了一天,家里的事让智能化系统帮您做吧! 这是一个新兴的朝阳产业,在中国有着巨大的市场前景,我们的智能化技术结合了您的家庭装修完全可能营造出很多以前无法相信的家装效果,利用本公司的专利技术, 我们真诚为您设计一系列高科技产品,取代传统的灯光及家电控制模式,为您提供安全保障的同时,让您轻松享受生活,易学易用,方便您将家居设置得更为舒适和写意,令日常生活复杂的事情变得更美妙。 第二章、别墅智能化的现状和必要性 家庭智能化的出现已经有了将近20年的历史,最早从比尔•盖茨的豪宅开始,那个高度科技化就如幻想故事片般,神奇的令人向往的智能生活已经开始逐步走入了“平常人”的家中。即使是“平常人”,那也只是极少的一部分在观念上同步于世界潮流,在生活上引领世界潮流的高品位时尚人士。   对于时尚的追求,我们脱离不了生活。追求的高品质生活,我们脱离不了智能科技带来的时尚。如美国(46.8%)、德国(42.4%)、瑞士(32.7%)、英国(28.5%)、法国(25.78%)、意大利(22.43%)……在这些开放的、浪漫的国度里,智能生活已经从百姓家庭逐渐向普及化迈进。中国的时尚,即使在近些年来紧随国际潮流的发展,但家居生活的时尚却与之相比相差甚远。即使中国早在97年初便开始提出高档住宅(豪宅)电气设计的总体要求:1.高度的安全性、私密性;2.舒适的生活环境;3.便利的通讯方式;4.综合的信息服务;5.家庭智能化系统。但是经过10年的发展,中国智能家庭的使用率也不到0.13%,而真正实现了家庭全智能化(语音智能、网络智能、照明智能、环境智能、监控/安防智能)的比例还不到千万分之一。通过此百分比的反差,我们也不难看出,即使是最寻常的百姓,他们也在积极的改善自己的生活,让自己的生活追随家居时尚发展的潮流。   家庭智能化科技能带给我们生活怎样的变化?也许真正能了解的只有走在家居时尚潮流浪尖的人们才能真正的体味其中的独到之处。安全、舒适、便利是它带给消费者最基本的生活享受。   智能化科技即将引领居家时尚生活的主流。  家居智能设计长久以来一直坚持的原则:健康性、安全性、舒适性、时尚性! 第三章、别墅智能化设计的具体解决方案 我们已经根据您别墅的布局做了一个初步设计方案。整个设计方案共分为四部分: 1.智能照明系统 2.环境控制系统 3.安防控制系统 4.综合布线系统   针对以上四个系统部分,我们给予简要的功能设计性描述: 1.智能照明系统 1.1调光软启功能   开灯时,灯光缓缓亮起,关灯时,灯光慢慢地变暗,然后熄灭,这个浪漫的过程即保护了您的眼睛免受光线骤变的刺激,又大大延长了灯具的寿命。灯光的亮度可以随意调节,即使将灯光亮度调制萤火状态,光线也不会闪烁。灯光的软启功能可记忆上次灯光亮度级别。 1.2定时功能   可以对别墅室内外的灯光系统进行定时功能。在控制方式上为你节约能源时,还能让您感觉家庭照明系统的人性化。假如你长期出门在外,你可以在晚间设置好让家中的灯光自动开启和关闭,可以起到警示的作用。 1.3场景功能   各种(组)灯光的变幻组合能在不同的时刻营造出和谐的氛围和浪漫的情调,通过智能照明系统的布线和设置,能轻松的根据自己的喜好组合不同的场景模式。并能将这些场景实现“一键式”存储和开启。每个灯在不同场景中各自的状态和亮度均可设置并记忆,使用时只需轻轻一按,复杂的灯光效果即刻呈现。场景功能中,照明灯光还可以与其它设备(如幕布、窗帘、电视/音响等)配合组合成复杂的场景。如会客、读书、听音乐、晚餐模式、影院模式等等。 1.4多种方式的控制功能   通过智能灯光系统,您可以座在沙发上或躺在床上用遥控器控制家中所有的灯具,而不必为了关上某一盏灯而楼上楼下、东房西房的来回走动。 假如你是坐在电脑旁边,那么你将更加轻松的控制家中所有的用电设备,灯具的控制自在其中。 在你已在出门的门口,如果不想再去拿遥控器或开电脑,那么只要您一伸手,就能通过门口的智能弱电开光,控制家中所有灯具。 假如你出门在外,而忘了关灯,那么只需你用电话拨通家中熟悉的号码,你就能轻松的实现对家中照明系统进行控制。除此之外,假如长途旅游在外,你还可以通过电话远程有规律的控制家中的灯光,已起到警示的作用。 2.环境控制系统 2.1背景音乐系统   不管您是想亲自为家人做一顿佳肴而工作于厨房,还是您懒洋洋的躺在客厅沙发小憩,还是您拿着一本时尚手册坐卧在书房,还是您和家人享受天伦嘻笑于花园草坪……柔和的背景音乐总是会环绕在您身边,让您及您的家人总是生活欢乐音乐的世界。 2.2窗帘控制系统   清晨,也许不再需要那片刻间令人烦躁的闹钟将你吵醒,而靠的窗外的鸟语花香和柔和的自然阳光让您从睡梦中自然醒来。窗帘控制系统总是会最恰合时宜的开启窗帘,让室外清晨的花香飘入,让您懒洋洋的沐浴阳光。   配合灯光的场景,窗帘的自动开合,有时也能酿造出另一份浪漫的气氛。只需轻点遥控,它便能为您的隐私起到第一层保护。 2.3空气调节系统   酷暑炙热的夏天驱车回家,当您停车入库后,车库内换气系统可以通过(遥控)手动或自动定时控制将汽车的尾气和汽油的味道清除干净。等到次日清晨,自动定时的换气系统会将室外清晨空气中花香的味道注入车库,让你在享受晨曦的味道的时候,丝毫感觉不到汽车尾气的异味给您带来的不悦。 2.4庭院浇花   别墅的花园种植一些植物和花木,浇水也是可以进行智能化管理的。用自动浇花系统可以自动浇水和定时浇水功能。在阳台上观景时可以用遥控器启动浇花的电磁阀门,站在阳台上,控制着花园里一个个的喷头,这种“阅兵式”的浇花,正是智能化控制系统带给你的生活享受。即使是家中拥有保姆,但生活却不能缺少这一种享受。 3.安防控制系统 3.1周界防范 3.1.1红外对射   在别墅的四周安装红外对射栅栏,在设防状态下,如果有任何非法进入时,报警系统会启动。先进的红外对射栅栏采用人性化的设计,可随意旋转发射、接受器的角度。完善的防拆、防剪断、防短路、防宠物等功能,大大加强了防误报能力。即使人匐匍穿越,翻越而过,系统绝不漏报。红外栅栏将为您家庭安全站守第一岗。 3.1.2视频监控   在房子的外围及内部可安装多处视频监控点,这样无论主人在哪里,通过便利的互联网就可以看到家中一天24小时内发生的所有情况。在您长期出门在外时,它可以将家中30天×24小时内所发生的一切全部记录下来,回家后您可以一一进行回放。甚至在您出门在外的过程中,它还可定时定量的给你的邮箱、手机发送相关捕捉的图象。当家中出现异常状况时,视频监控系统还可以自动电话报警。 3.2 室内安防 3.2.1防火   在衣帽间、厨房和餐厅安装烟感探头和煤气探头,当有烟雾和煤气泄漏时发出信号,系统会立刻响铃报警,待响铃等待时间带到您预先设定值时,会自动拨打电话报警。 假如险情是由于煤气泄漏,如果供气系统安装了煤气机器手还可将煤气阀门自动关闭。 3.2.2门/窗破入感应报警 当家中安防设备都进行布防后,如果门窗被非法破坏后闯入,系统会立刻响铃报警,待响铃等待时间带到您预先设定值时,会自动拨打电话报警。 3.2.3移动探测   当开启移动监测功能后,进入移动探测器范围内的任何移动的物体都会被监测。移动监测系统具备宠物等移动小物体识别功能,能有效的防止错报,漏报。在遇到紧急情况时,系统会立刻响铃报警,待响铃等待时间带到您预先设定值时,会自动拨打电话报警。 4.综合布线系统 我们的综合布线系统是从您家庭信息化、舒适化和安全化多方位考虑。我们将会把您别墅中各种信息家电的信号线(如电话线、网络线、有线电视信号线、音视频信号线、监控信号线等),按进户线和室内分配线统一归类并进行集中布线,方便集中管理,轻松自如地改变室内信号线的配置,完成对进户信号线的分配、跳接及管理,是各种信息家电的通讯桥梁。 最具代表性的就是家庭网络的布线和背景音响的布线。网络化音响系统可以将一个音源共享给各个房间,使您在任何房间都可以听到同一首歌。控制起来也很方便,您可以通过智能家居的所有控制方式来对音响进行控制,可以任意一路进行单独的开关和调音。通过综合布线,可以在多个地点预留接口,为以后背景音响的拓展作准备。例如,在别墅的花园中进行接口预留,即使不立即使用,以后的拓展也是很方便的。现在背景音响的网络布线已经成为家庭综合布线的典型时尚代表。 除此之外,我们会在您别墅范围通过综合布线,实现无线网络覆盖,即使您拿着笔记本电脑移动到您家庭或室外草坪的任何一个角落,也能轻松的上网。 5.家庭影院系统 家庭影院设计主要包括如下几个方面: 1. 设计专业的家庭影音播放系统, 影音播放系统主要包括三大部分组成,分别为音视频播放机、AV放大器、专业的音响系统. 2.设计家庭影院投影系统,包括满足现代高清视频播放的投影显示和大画面显示 3. 家庭影院装修设计, 高音质和画质以及操控的便利性及艺术空间的视听一体化全新概念。如何选取好的吸音材料和适合用户需求的空间布局设计也是家庭影院系统不可缺的. 4. 设计家庭影院的环境灯光系统,设计满足家庭影院的智能灯光系统,营造整个影院在播放电影或者倾听音乐的和谐舒适的气氛 5.设计智能化集中控制的家庭影院控制系统,对家庭影院的电器设备,包括环境灯光控制,投影显示,音频播放器的全方位控制,既方便了用户在休闲,娱乐过程中的操作,有充分体现了现代科技给人们生活带了极大的用处. 采用智能灯光控制和智能中央控制系统,自然合理的分配灯光照明,减少不必要的照明电能损耗。还可以根据外界光的强度值设定时段,自动调节灯光亮度。它还能够在我们不需要使用的时候自动切断电器电源,减少电器不必要的静态能耗。这样既符合您舒适的感觉,又能起到节能的作用。 家庭多功能厅功能说明 1. 配置满足主人一般性娱乐等要求的高可靠性,高音质的多功能音响系统。 2. 配置操作简便的智能灯光控制系统,包括环境的灯光,窗帘; 3. 采用智能生物探测终端系统,使整个家庭多功能听更加人性化; 4. 采用高清100寸投影系统,主要功能是实现视频及计算机信号的同步或异步显示、满足户主人在休息的时候观看高清的电影等各种要求; 5. 整个系统总体配置无线触摸屏控制系统,用户只要通过无线触摸屏就可以在房间的任何一个位置对多功能厅的环境,包括对电视信号的选择,可以任意选择各种模式下灯光的控制和场景预设,方便用户操作。

  • 回复了主题帖: 如何选择和使用2.4G 天线的应用?

    C2xxx如何发射未调制载波?        未调制载波一般用于测量频率误差。使用图像界面PC端工具SmartRF Studio 可以在 Continuous Tx 下直接选择 Unmodulated。不使用PC端工具控制,上电直接发送,则需要在程序里面上电直接运行对应的 Strobe Command。这个命令可以在对应芯片的User Guide 里面去查找。

  • 发表了主题帖: 如何选择和使用2.4G 天线的应用?

    首先,2.4GHz WiFi 或蓝牙天线是可以通用的。 其次,强烈建议参考 TI DN035, “Antenna Selection Quick Guide”。这个文档里面每种天线都有对应的说明文档的链接。 最后,天线本身的尺寸和周边的地需严格按照参考设计或规格书中的说明。

  • 发表了主题帖: CC2xxx的输出/输入阻抗值具体是多少?

           对于单端输出/输入,我们可以视为 50 Ohm。对于双端差分端口,如 CC253x 和 CC254x, 差分阻抗为非标准值。TI推荐复制参考设计而不是告知具体阻抗值有以下考虑。        首先,CC253x, CC254x 等差分端口芯片的射频输出/输入阻抗不是标准的 50 Ohm 或 100 Ohm。 其次,告知差分阻抗是多少没有可操作性。因为芯片设计时的仿真参数跟实际有差距,参考设计就是TI工程师在仿真参数的基础上经过大量调试和测试确定下来的。 第三,因为板上的寄生射频参数对差分阻抗影响的比较大的,如果按计算阻抗的工具算出的线宽线距去做,效果会差很远。 回头还是得在板上调试阻抗匹配。 最后,实际走线严格来说是需要用分布参数才能严谨描述的。另外如果告知阻抗,由于电路板上走线和器件的寄生参数,依然是不能做到严格控制。        正由于上述原因,严格参考设计成了最为可行,最简单有效的方法。  

  • 发表了主题帖: 关于射频芯片中的功率放大器知识

    一、射频芯片市场         根据 Yole Development 的统计,2G 制式智能手机中射频前端芯片的价值为0.9 美元,3G 制式智能手机中大幅上升到3.4 美元,支持区域性4G 制式的智能手机中射频前端芯片的价值已经达到6.15美元,高端LTE 智能手机达到12-15 美元,是2G 制式智能手机中射频前端芯片的17 倍。预计到2023 年手机射频(RF)前端模块和组件将达到350 亿美元,17-23 年复合年增长率为14%。         各种手机射频前端组件的增速不一,如天线调谐器(Antenna tuners)的复合年增长率为40%,滤波器(Filters)的复合年增长率为21%,射频开关(Switches)的复合年增长率为12%,而射频功率放大器和低噪声放大器(PAs & LNAs)的复合年增长率仅为1%。         4G多模多频手机所需的PA芯片增至5-7颗,StrategyAnalytics预测称5G时代手机内的PA或多达16颗之多。就工艺材料来说,目前砷化镓PA是主流,CMOS PA由于参   数性能的影响,只用于低端市场。4G特别是例如高通等LTE cat16,4x20MHZ的载波聚合技术,对PA线性度高Q值得要求,会进一步依赖砷化镓PA。同时,据Qorvo预测,随着5G的普及, 8GHz以下砷化镓PA仍是主流,但8GHz以上氮化镓有望在手机市场成为主力。随着无线通讯协议的复杂化及射频前端芯片设计的不断演进, PA设计厂商往往将开关或双工器等功能与功率放大电路集成在一个芯片封装中,形成多种功能组合。根据实际情况,TxM(PA+Switch)、PAD(PA+ Duplexer)、 MMPA(多模多频PA)等多种复合功能的PA芯片类型。 二、什么是RF功率放大器         功率放大器是把输入信号放大并向负载提供足够大的功率的放大器。射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。在调制器产生射频信号后,射频已调信号就由RF PA将它放大到足够功率,经匹配网络,再由天线发射出去。         放大器的功能,即将输入的内容加以放大并输出。输入和输出的内容,我们称之为“信号”,往往表示为电压或功率。射频功率放大器的主要技术指标是输出功率与效率,如何提高输出功率和效率,是射频功率放大器设计目标的核心。通常在射频功率放大器中,可以用LC谐振回路选出基频或某次谐波,实现不失真放大。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 根据工作状态的不同,功率放大器可分为:线性功率放大器和开关型功率方法器。         线性功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。线性射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 开关型功率放大器(Switching Mode PA,SMPA),使电子器件工作于开关状态,常见的有丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。SMPA将有源晶体管驱动为开关模式,晶体管的工作状态要么是开,要么是关,其电压和电流的时域波形不存在交叠现象,所以是直流功耗为零,理想的效率能达到100%。 总体来讲,传统线性功率放大器具有较高的增益和线性度但效率低,而开关型功率放大器具有很高的效率和高输出功率,但线性度差。 三、功率放大器的工艺         目前功率放大器的主流工艺依然是GaAs工艺。另外,GaAs HBT,砷化镓异质结双极晶体管。其中HBT(heterojuncTIon bipolar transistor,异质结双极晶体管)是一种由砷化镓(GaAs)层和铝镓砷(AlGaAs)层构成的双极晶体管。         CMOS工艺虽然已经比较成熟,但Si CMOS功率放大器的应用并不广泛。成本方面,CMOS工艺的硅晶圆虽然比较便宜,但CMOS功放版图面积比较大,再加上CMOS PA复杂的设计所投入的研发成本较高,使得CMOS功放整体的成本优势并不那么明显。性能方面,CMOS功率放大器在线性度,输出功率,效率等方面的性能较差,再加上CMOS工艺固有的缺点:膝点电压较高、击穿电压较低、CMOS工艺基片衬底的电阻率较低。 四、功率放大器发展趋势         英国研究公司Technavio 称,全球功率放大器市场主要有三个四发展趋势:晶圆尺寸增大;初创企业采用CMOS 技术;国防领域的高速放大器需求逐渐增大:利用InGaP 工艺,实现功率放大器的低功耗和高效率。         晶圆尺寸变大。半导体行业见证了过去40 年晶圆尺寸的变化,砷化镓(GaAs)晶圆尺寸从50mm 增大到150mm,制造成本降低了20%~25%。目前,业界制造功率放大器通常采用150mm晶圆。预测150mm 晶圆还将继续使用,因为台湾的稳懋半导体公司等制造商还在大力投资升级和新建150mm 工厂。业内正在开发200mm 晶圆技术,预计2018 年底能够试生产。斯坦福大学研究人员正在研究降低200mm GaAs 晶圆的价格,使其可以以较低的价格与硅晶圆争夺市场。同时这也对掩膜版检测设备登晶圆制造设备提出需求。         初创公司采用CMOS技术。一些初创企业,如Acco Semiconductor , 正越来越多的采用CMOS 技术。Acco Semiconductor 抓住移动手机和物联网产品对射频功率放大器巨大需求的机会,已经投资350 亿美元扩展其基于CMOS 的射频功率放大器业务。目前绝大多数功率放大器采用锗硅(SiGe)或GaAs 技术,而非CMOS。但根据报告可知,基于CMOS 工艺有助于实现低成本、高性能的功率放大器。 国防领域需要高速放大器。军事领域需要更高效的利用频谱,更多的使用移动设备来通信。因此,Technavio 公司称,军事领域要求高速功率放大器。美国国防先期研究计划局(DARPA)在太赫兹电子项目中已取得进展,即美国诺·格公司开发了出固态功率放大器和行波管放大器,这是仅有的两款太赫兹频率产品。太赫兹频段的功率放大器可用于许多领域,包括高分辨率安全成像、高数据速率通信、防撞雷达、远距离危险化学品和**探测系统等,这些设备的高速率运行要求必须使用高速放大器。         利用InGaP 工艺,实现功率放大器的低功耗和高效率。InGaP 特别适合要求相当高功率输出的高频应用。InGaP 工艺的改进让产量得到了提高,并带来了更高程度的集成,使芯片可以集成更多功能。这样既简化了系统设计,降低了原材料成本,也节省了板空间。有些InGaP PA 也采用包含了CMOS 控制电路的多芯片封装。如今,在接收端集成了PA 和低噪音放大器(LNA)并结合了RF 开关的前端WLAN 模块已经可以采用精简型封装。例如,ANADIGICS 公司提出的InGaP-Plus 工艺可以在同一个InGaP 芯片上集成双极晶体管和场效应晶体管。这一技术正被用于尺寸和PAE(功率增加效率)有所改进的新型CDMA 和WCDMA 功率放大器。 五、功率放大器的主要指标         工作频率范围。一般来讲,是指放大器的线性工作频率范围。如果频率从DC 开始,则认为放大器是直流放大器。 增益。工作增益是衡量放大器放大能力的主要指标。增益的定义是放大器输出端口传送到负载的功率与信号源实际传送到放大器输入端口的功率之比。增益平坦度,是指在一定温度下,整个工作频带范围内放大器增益的变化范围,也是放大器的一个主要指标。 输出功率和1dB 压缩点(P1dB)。当输入功率超过一定量值后,晶体管的增益开始下降,最终结果是输出功率达到饱和。当放大器的增益偏离常数或比其他小信号增益低1dB 时,这个点就是大名鼎鼎的1dB压缩点(P1dB)。 效率。由于功放是功率元件,需要消耗供电电流。因此功放的效率对于整个系统的效率来讲极为重要。功率效率是功放的射频输出功率与供给晶体管的直流功率之比。 交调失真。交调失真是指具有不同频率的两个或者更多的输入信号通过功率放大器而产生的混合分量。这是由于功放的非线性特质造成的。 三阶交调截止点(IP3)。IP3 也是功放非线性的重要指标。当输出功率一定时,三阶交调截止点输出功率越大,功放的线性度就越好。 动态范围。功放的动态范围一般是指最小可检测信号到线性工作区最大输入功率之间的差值。自然,这个值肯定是越大越好。 谐波失真。当输入信号增加到一定程度后,功放会由于工作到了非线性区产生一系列谐波。对于大功率放大器系统中,一般需要用滤波器将谐波降到60dBc 以下。 输入/输出驻波比。表明功放和整个系统的匹配程度。输入、输出比变坏会导致系统的增益起伏和群时延变坏。但是高驻波比的功放是比较难以设计的,一般的系统中,都会需要要求功放的输入驻波比低于2:1。

  • 2020-12-21
  • 发表了主题帖: Wi-Fi 的传感器网络形式及相关典型应用

            现代工厂的数字系统越来越复杂,许多不同供应商的设备和软件之间都存在互连。这种复杂性促使人们放弃了专有接口,取而代之的是以太网和 Wi-Fi® 等通用标准。数字通信标准化可以看作是第四次工业革命(工业 4.0)的一部分,其中物联网 (IoT) 技术极大地简化了不同设备之间的连接(图 1)。本文介绍了最常见的基于 Wi-Fi 的传感器网络形式,以及相关的典型应用。 图 1:支持 Wi-Fi 的传感技术在工业环境中越来越普遍。 Wi-Fi 的历史和版本         Wi-Fi 是一种基于 IEEE 802.11 的无线网络协议,但已经过进一步的标准化,以确保设备间的互操作性。Wi-Fi 标准由 Wi-Fi® 联盟维护,只有经认证符合该标准的产品才可使用该商标。 在无线局域网 (LAN) 应用中,802.11 标准已经非常成熟。该标准由电气电子工程师协会 (IEEE) 于 1997 年发布,名为 802.11-1997。随后的主要版本按时间顺序包括 802.11b、802.11a、802.11g、802.11n 和 802.11ac。虽然 IEEE 802.11 为 Wi-Fi 提供了技术基础,但 IEEE 并未进行任何认证或测试,这导致了早期设备的互操作性问题。 1999 年,首批采用 IEEE 802.11 的一些公司成立了 Wi-Fi 联盟。该联盟的目的是提高成员公司生产的设备之间的互操作性。创始公司包括 3Com 和 Nokia。Wi-Fi 世代对应于 IEEE 802.11 标准的主要版本,如表 1 所示。                    表 1: Wi-Fi 标准发展年表。 覆盖范围、速度和频率     Wi-Fi 可以在不同的频率下工作,设备通常可以配置为使用不同的频率。最常见的频率为 2.4 GHz 和 5 GHz。通常,更高的频率提供更高的数据传输速度。然而,更高的频率也更容易耗散,特别是在通过固体时。因此,较低的频率通常会提供更大的覆盖范围。     当与其他设备在同一频率范围内工作时,Wi-Fi 也更容易受到干扰。例如,在 2.4 GHz 下,微波炉、无绳电话和蓝牙设备可能会发生 Wi-Fi 干扰。这意味着在某些环境中,5 GHz 实际上可能比 2.4 GHz 提供更好的覆盖范围。如果在特定频率下遇到问题,通常最简单的方法是尝试不同的频道,甚至频段。 频率范围是内含特定频道定义的频段。例如,2.4 GHz 分为 14 个频道。频道 1 的频率范围为 2401 至 2423 MHz,频道 2 的频率范围为 2406 至 2428 MHz,等等。5 GHz 频段的可用频道要多得多。 IEEE 802.11ah 称为 Wi-Fi HaLow 或延伸范围,工作在 900 MHz 左右的较低频段,并结合 1 MHz 的窄射频频道。这些窄低频频道与协议变更相结合,意味着超低功耗,甚至比低功耗蓝牙还要低。覆盖范围将是 2.4 GHz 的两倍左右——单流 150 kbps 下超过 40 米,或者使用更复杂的双流芯片则超过 80 米。虽然 IEEE 已发布 802.11ah 标准,但 Wi-Fi 联盟尚未开始对设备进行认证。 另一方面,IEEE 802.11ad 或 WiGig 在 60 GHz 左右的较高频段工作,可实现通常约为 7 Gb/s 的高数据传输速率。 Wi-Fi 网络拓扑     网络拓扑是设备之间连接的基本结构(图 2)。例如,在星形拓扑结构中,一台设备是集线器,其他所有设备都连接到该集线器。在全连接拓扑结构中,每台设备都连接到其他每一台设备。网状拓扑结构类似于全连接拓扑结构,连接也是分散的,但未必每对设备之间都有连接,这也可以称为部分连接网。在总线型拓扑结构中,每台设备都连接到一根电缆上,这就是所谓的总线。 图 2:网络拓扑随处可见,但大多数 Wi-Fi 网络都是星形或网状网络。(图片来源:Design World) Wi-Fi 网络通常是星形或网状网络。网状拓扑结构可靠而安全,不仅可以降低功耗,而且由于单个链路可以更短,因此能改善覆盖范围。对于拥有大量低功耗传感器的大型物联网网络来说,这些都是重要的优势。不过,星形网络也可以提供这方面的优势。在星形网络中,各个设备可以间歇性地传输数据,只有集线器需要连续供电来提供 Wi-Fi 信号。 工业专用 Wi-Fi 实现 如上所述,Wi-Fi HaLow 使用较低的频率来实现更大的覆盖范围和更低的功耗。这对于小型电池供电的设备非常有用。在需要实时通信的控制和工业自动化应用中,Wi-Fi 一直难以提供足够高速、低延迟和稳定的连接。虽然人们对实时 Wi-Fi 的兴趣至少有十年之久,但这项技术还没有被广泛采用。最成功的实时 Wi-Fi 实现可能是 WIA-PA,即中国过程自动化工业无线通信标准。 在要求不高的工业应用中,如运动传感器和条形码扫描器,Wi-Fi 更为常见。机械的状态监测已变得非常普遍。对于旋转机械,采用加速度计来监测振动。此外,环境监测也是状态监测的一个重要方面,经常会部署小型温度、压力、湿度和气体浓度传感器。 状态监测传感器可部署在许多不同的环境中,包括非常普遍的工厂和仓库机械,以及高价值商用运载工具,如卡车、推土机和飞行器。在发电、采矿和钻井作业中,状态监测技术也已非常成熟并至关重要。 更多部署无线传感器的应用实例包括监测交通、污染水平和天气。 竞争技术 Wi-Fi 并不是实现工业设备之间无线通信的唯一标准。对于短距离和低功耗应用,Wi-Fi 与蓝牙和 ZigBee 之间存在竞争。对于长距离应用,与 Wi-Fi 竞争的主要是蜂窝技术,即 3G、4G 和 5G。 蓝牙是一种公认的低功耗通信方式。Zigbee 是一种基于 IEEE 802.15.4 的新技术,硬件成本和功耗甚至比蓝牙更低。虽然 Wi-Fi HaLow 打算在这一领域展开竞争,但并没有达到 ZigBee 的超低成本和功耗。让情况更加复杂的是,5G 也有自己的低功耗技术,即低功耗广域 (LPWA)。 总结 许多工业设备制造商仍在使用专有的工业无线技术。虽然这使得互操作性变得更加困难,但也意味着可以提供增强的安全性和实时通信。随着 Wi-Fi 在这些领域的不断改进,工程师们可以期待看到更多设备采用这一开放标准。另一方面,5G 正展现出无线工业物联网应用的巨大潜力。未来几年,最新的 Wi-Fi 6 与 5G 标准之间的竞争将更加激烈。

  • 回复了主题帖: NB-IoT 设备和 Cat-M设备,哪个更省电?

    对于 PSM 测量,Cinterion ENS22-E NB-IoT 模块(范围 2.8 - 4.2 V)采用 3.6 V 供电(图 3),以使结果与模块硬件接口描述的额定电流消耗相当。GPO 的数字电平需要设置为 3 V(图 3)。 图 3:Otii 项目 SUPPLY 设置。(图片来源: Thales) VUSB => +5 V - 需要此电源为 LGA DevKit 供电。注意!请勿另外通过 USB 为 DevKit 供电。 因此,电路板左下方的 DevKit 开关设置为左侧 PWR – EXT 和右侧 ASC0 – RS232(图 4)。 图 4:DevKit 开关设置。(图片来源: Thales) 根据测量设置,使用了 Otii 应用程序中的 UART 命令行。该命令行需要在 Otii 项目设置的 LOGS 部分中启用。 默认情况下,串行接口 ASC0(RX0/TX0 布线)的传输速度为 115200 波特(图 5)。 图 5:Otii 项目 LOGS 设置。(图片来源: Thales) 如何计算 PSM 定时器? 对于 PSM,使用 AT+CPSMS 命令来设置请求的周期性 TAU (T3412) 周期和请求的活动时间 (T3324)。该值需要以 8 位二进制格式输入,其中前 3 位表示 5 位二进制数的基础乘数。这是 3GPP 中的规定,可在以下规范中找到:TS 24.008(图 6)。 图 6:3GPP TS 24.008 中的周期性 TAU 和活动时间计算。(图片来源: Thales) 作为应用示例,该模块将被配置为每 7 分钟向网络发送一次跟踪区更新消息。这意味着周期性 TAU 将被设置为 7 分钟或 420 秒。 对于 7 分钟,可以使用 1 分钟 (101) 乘数与值 7 (00111) 或 30 秒 (100) 乘数与二进制值 14 (01110)(图 6)。 活动时间设置方法相同,但基础值不同。例如,10 秒活动时间将使用值 000 作为 2 秒基础乘数和 00101(等于 5),因此命令为: at+cpsms=1,,,10001110,00000101 如何设置 PSM 定时器? 启用 Devkit 电源(5 V,见图 7)和模块电源(3.6 V,见图 7)后,通过将 GPO2(图 7)打开约 2 秒,然后再关闭来开始启动该模拟。 图 7:Otii 电源开关。(图片来源: Thales) 该模块启动后将在 UART 日志中使用以下 URC(非请求结果码)来指示这一点: \sHI2115-ssb-codeloaderl\e\sHI2115-codeloader&\e   ^SYSSTART 现在可以将 AT 命令传递给模块,以便 1) 启用挂起模式,2) 启用注册状态显示,以及 3) 检查并设置 PSM 定时器: 如前所述,Thales 专用省电功能只需发送一次配置命令即可启用。此设置为非易失性设置,会一直保持到更改为止。at^scfg="MEOpMode/PowerMgmt/Suspend","1" at^scfg="MEOpMode/PowerMgmt/Suspend","1"   ^SCFG: "MEOpMode/PowerMgmt/Suspend","1"   OK   +CIEV: suspendAvailable,1 该模块将通过 +CIEV URC 来通知挂起功能现已可用。如果已启用挂起,则不会有 suspendAvailable URC。 在发送“at+cereg=5”之后,该模块将通过 URC 通知用户模块注册状态的变化。此设置是易失性设置,在重启后必须重新设置。在模块已注册的情况下,它可能只回复 OK。在这种情况下,可以通过发送“at+cereg?”来请求状态。 at+cereg=5 OK   at+cereg? +CEREG: 5,5,C9F9,00323333,9,,,00001111,10100111           |   |    |      |      |        |_Periodic-TAU(T3412): 10m           |   |    |      |      |__________Active-Time (T3324): 30s           |   |    |      |_________________Act:E-UTRAN(NB-S1 mode)           |   |    |________________________CI - cell ID           |   |_____________________________TAC - Tracking Area Code           |_________________________________stat:5 registered roaming 在上面的例子中,模块在漫游模式下注册,并显示网络当前配置的 PSM 值(每 10 分钟 TAU 一次,活动时间为 30 秒)。 现在,可以通过“at+cpsms”命令设置请求的值。此命令将触发模块向网络发送 TAU(跟踪区更新)消息。在来自网络的回复消息(跟踪区更新接受)中,模块将接收必须执行的值。换句话说,网络决定采取哪些值。这些值有希望与请求的值相同,但这并不能保证。这取决于移动网络运营商,以及他们是允许请求的值,还是用他们的值(有时是固定的)替代这些值。 at+cpsms=1,,,10001110,00000101 OK   at+cereg? +CEREG: 5,5,C9F9,00323333,9,,,00001111,10010100           |   |    |      |      |        |_Periodic-TAU(T3412):  7m           |   |    |      |      |__________Active-Time (T3324): 30s           |   |    |      |_________________Act:E-UTRAN(NB-S1 mode)           |   |    |________________________CI - cell ID           |   |_____________________________TAC - Tracking Area Code           |_________________________________stat:5 registered roaming   +CIEV: suspendReady,0   +CIEV: suspendReady,1 该模块将使用 suspendReady URC 来指示何时可以进入挂起模式。一旦收到“suspendReady,1”的指示,就可以通过设置 RTS0(即 GPO1,图 7)使模块进入挂起模式 5 秒(5 秒是默认值,也可以更改,请参见模块 AT 规范文件)。 PSM 定时器对能耗有什么影响? 作为参考测量,图 8 显示了默认模式(未启用 PSM、eDRX 或挂起模式)下 Cinterion ENS22-E NB-IoT 的电流曲线。 图 8:未启用任何省电模式的参考测量电流消耗曲线。(图片来源: Thales) 标记区域的预期平均电流消耗约为 16 mA。 启用 PSM 定时器后(本例中周期性 TAU 为 7 分钟,活动时间为 10 秒),且网络已接受这些定时器的情况下,电流消耗降至平均 13 mA(图 9)。 请注意,网络可能会忽略 PSM 定时器的请求,而建议使用其他定时器。不同的 MNO 和不同的网络通常具有迥然不同的允许定时器集,因此在部署物联网设备之前需要了解这一点。 图 9:启用 PSM 时的电流消耗曲线。(图片来源: Thales) 如果设置了挂起模式,该模块将指示它准备好使用 URC(未经请求的结果代码)挂起。切换 RTS 信号后,本例为在 Otii 中设置为 GPO1(图 7)后,模块进入挂起模式,平均电流消耗约为 3 µA(图 10)。 图 10:启用挂起模式时的电流消耗曲线。(图片来源: Thales) 如何计算 eDRX 定时器? 在设置 eDRX 的定时器值时,所用的计算方式非常简单。有的定时器适用于每一种无线接入技术,如图 11 中的表所示。 图 11:3GPP TS 24.008 中的 eDRX 定时器定义。(图片来源: Thales) 如何设置 eDRX 定时器? 使用 eDRX 的影响可以在 LGA DevKit 上通过 Cinterion EMS31 纯 Cat-M 模块来演示。该 LTE-M 模块的供电电压范围为 3.2 - 5.5 V。Otii 将为其提供 3.8 V 的电源。在 Otii 应用程序的项目设置中,必须调整主电压(图 3)。 模块启动后,如 ^SYSSTART URC 所示,需要增加 PSM 定时器,使其具有更长的活动期(5 分钟),以便更好地看到 eDRX 的影响 [(设置 at+cpsms=1,,,00000110,00100101)、禁用 eDRX (at+cedrxs=0) 并通过 at+cereg=4 启用注册状态显示]。 ^SYSSTART   +CIEV: prov,1,sbmjp   at+cedrxs=0 OK   at+cpsms=1,,,00000110,00100101 OK   at+cereg=4 OK 要核实 eDRX 是否已按请求禁用,请使用 at+cedrxrdp 命令读取当前的动态 eDRX 参数。 at+cedrxrdp   +CEDRXRDP: 0 模块注册到网络后,即应收到相关的 URC,其中显示具有 5 分钟活动时间的注册状态。 +CEREG: 1,"0001","01A2D004",7,,,"00100101","00000110"       |         |_TAU(T3412):  60min                                    |_____Active-Time(T3324): 5min 使用 Otii 应用程序进行测量时,在活动时间内每 1.25 ms 就可以看到连续无线电监听器峰值,如图 10 中 1 分钟时间戳附近区域所示。 现在,使用 3GPP 命令 at+cedrxs 或使用 Thales 特定命令 at^sedrxs 发送启用 eDRX 的命令。3GPP 命令的缺点是无法设置寻呼时间窗 (PTW),而在 Thales Cinterion 模块上实现的专用 AT 命令则可以。 根据图 10 中的表格,Cat-M 中的 eDRX 值被设置为 20.48 秒(“0010”),寻呼时间窗为 5.12 秒(“0011”)。 at^sedrxs=2,4,0010,0011   OK   +CEDRXP: 4,"0010","0010","0011" 该模块将通过 +CEDRXP URC 通知用户 eDRX 值的变化,其中会显示所请求的 eDRX (PCL) 值“0010”、从网络中设置且也必须从模块中使用的值 [第 2 个“0010”])和 PTW(“0011”)。 该模块需要一些时间来适应更改后的周期,并且最终将显示 eDRX 行为,如图 12 所示。 eDRX 定时器对能耗有什么影响? eDRX 定时器仅在活动阶段有影响。配置的活动期越短,eDRX 的影响就越低。 eDRX 适用于需要长网络访问时间间隔甚至是全程不访问的设备。在此时间内,设备的接收器部分将仅在特定的时间间隔 (PTW) 内启用,每个 eDRX(PCL) 周期会重复该时间间隔。由于设置了定时器,移动网络知道设备将在哪些时间帧中监听寻呼,并且将仅在该时间帧期间发送针对该设备的寻呼。这也将节省网络 (eNodeB) 端的资源。 默认设置为 PTW,设置为 5 秒,不启用 eDRX(图 12)。启用 eDRX 后,平均电流消耗从 3 mA 降至 2 mA。 图 12:寻呼时间窗设置为 5 秒作为参考,不启用 eDRX;右侧为相同的 PWT,但启用了 eDRX。(图片来源: Thales) 总结 根据物联网设备用例和可用网络技术的不同,可以使用不同的省电功能来延长设备的电池寿命。 使用 PSM,可以为设备设置长达 14 天的深度休眠模式。 设备会根据设定的时间间隔定期唤醒,连接至网络,并可以选择发送数据。在进入连接状态之后一小段时间,设备将处于活动但空闲的状态,并在该活动时间内侦听传入的数据。在这段活动时间内,可以使用 eDRX 配置设备启用其接收器的时隙。 所有的设置都配合网络来完成。网络始终知道设备能够接收数据的时间和时长。 采用 Cat-M 技术的设备将比 NB-IoT 设备需要更多的电能。设备休眠的时间越长,节省的电能就越多。设备侦听传入数据的时隙越短越少,其能耗就越优化。 因此,在最佳情况下,设置最大 PSM 和最小活动时间并且只有一个监听峰值(PTW 最小)时,NB-IoT 设备最省电。

  • 发表了主题帖: NB-IoT 设备和 Cat-M设备,哪个更省电?

            提高物联网 (IoT) 设备的电池寿命是低功耗广域网 (LPWAN) 技术的主要目标之一。因此,省电功能是蜂窝 LPWAN 技术、NB-IoT(Cat-NB1 和 Cat-NB2)和 Cat-M(LTE-M,亦称 Cat M1)的重要组成部分。但是,这些功能是如何使用的,对电流消耗有怎样的影响呢? 本文本着解答这些问题为目标,探讨了省电功能的定义、定时器及其计算方法,以及启用这些功能的命令。为了了解对能源消耗的影响,所有这些内容都随附了电流消耗曲线的可视化显示。 NB-IoT 和 Cat-M 的省电模式         NB-IoT 和 Cat-M 技术有两个基本的省电功能:省电模式 (PSM) 和扩展型非连续接收 (eDRX)。PSM 使设备能够设置休眠和活动定时器,并转发到网络:周期性跟踪区更新 (TAU) (T3412) 和活动时间 (T3324)(图 1)。如果被网络接受,网络将在设定的时间内保留设备在系统中的注册状态,如果设备在这段时间内被唤醒,则不需要再重新执行连接程序(分离和重新连接程序能耗会很高)。在休眠间隔期间,无法访问设备,但由于存在定时器,网络知道设备的下一次唤醒时间,以及它处于活动状态以接收寻呼消息的时长。设备的深度休眠模式可以设置为长达 14 天。         相较于目前 LTE 网络中现有的常规 DRX,eDRX 在时间方面得以延长。eDRX 延长了设备在活动时间段内不监听网络的时间。对于许多物联网设备来说,在几秒钟或更长时间内无法访问是可以接受的。这样功耗得以降低,而与应用 PSM 相比,设备仍可访问。所要做出的妥协是功耗降幅不如 PSM 大。eDRX 可通过定时器寻呼周期长度 (PCL) 和寻呼时间窗 (PTW) 来配置(图 1)。 在蜂窝模块上设置 PSM 和 eDRX 定时器的命令在 3GPP 技术规范 TS 27.007 中进行了定义,如下所示: AT+CPSMS=[<mode>,,[, <RequestedPeriodicTAU>[, <RequestedActiveTime>]]] AT+CEDRXS=[<mode>[, <AcT-type>[, <Requested_eDRX_value>]]] PTW 是个例外。本文将介绍一个由 Thales 创建的 PTW 命令,该命令特定于 Thales 用作受测设备 (DUT) 的 Cinterion® 模块: AT^SEDRXS=[<mode>[, <AcT-type>[, <Requested_eDRX_value>][, <Requested_Paging_time_window>]]] 此外,还将引入所谓的挂起模式,这是 Thales 为 Cinterion 模块提供的另一种专用省电功能,用于进一步推动模块进入最低能耗状态。此命令只需设置一次。 AT^SCFG="MEopMode/PowerMgmt/Suspend",1 图 1:省电功能、PSM 定时器(周期性 TAU 和活动时间)和 eDRX 定时器(PCL 和 PTW)。(图片来源: Thales) 设置 为了使低功耗模式可视化,使用了来自 Thales 的两套不同 Cinterion 模块以及来自 Qoitech 的 Otii 功率分析仪。 对于 PSM 定时器,使用了 Thales 的 DevKit ENS22-E,它已焊接到 NB-IoT 专用模块上。使用全球通用 MNO SIM 卡在商用网(漫游)中完成了 NB-IoT 中的测量。 对于 eDRX 定时器,使用了 LGA DevKit 上的纯 Cat-M 模块 Cinterion® EMS31。由于测试所在地德国没有 Cat-M 网络,该模块通过天线(而非有线)连接到 Amarisoft Cat-M 网络仿真器。 Qoitech 的 Otii 是一款多功能功率分析仪,在本例中有三个目的: 用于可视化和功率曲线分析 用于控制无线电模块(通过 GPIO 引脚) 用于功率测量和 UART 日志同步(通过 RX/TX 引脚和主电源) 布线如表 1 所示。 图 2:测量设置:Thales 带蜂窝模块的 LGA 开发套件以及 Qoitech 的 Otii。(图片来源: Thales)             [td]                     LGA DevKit 引脚 Otii 引脚 On GP02 RTS0 GP01 TXD0 TX RXD0 RX GND DGND VUSB +5V PWR(A) + GND -              表 1:用于图 2 设置的引脚连接。

  • 回复了主题帖: 物联网平台架构设计

    2.4 基于zigbee ZigBee也是一种流行的组网模式,zigbee本身设计是针对传感器之间的联网,具有非常强的低功耗能力 zigbee接入网络也依赖于zigbee网关,网关本身也是一个zigbee设备,zigbee设备是自组网的,在使用过程中注意的问题有 数据量的问题,设备能力和功耗本身是自相矛盾的,由于ZigBee是超低功耗方案,固在通信能力上也是打折扣的,很适合一些传感器数据的采集,如温度湿度,但如果对大数据量的视频类的就不适用了 这里主要介绍了,几种常用的物联网部署架构,至于物联网协议,这里就不多介绍,网上文章非常多。 3.智能设备 diego iot设计的初衷是让智能设备开发者摆脱对特殊模块的依赖,对于智能设备的开发,只要具备联网功能即可,没有特别多的要求。

  • 发表了主题帖: 物联网平台架构设计

        现在网上讨论的有关物联网的帖子非常之多,但大部分都是介绍理论或者有关硬件,通讯相关的问题,比如物联网模块,物联网通讯协议MQTT、XMPP、NB_IOT等,个人认为这些只是物联网中一部分,而涉及到物联网的设备如何管理,用户如何管理,数据包如何解析,大数据如何展示等也是物联网模块中非常重要的部分,所以作者就根据自身工作中总结出来的建构在云端的物联网平台基本架构分享给大家,并基于此架构如何一步一步来开发一套物联网平台。 物联网平台,应该是基于现在的互联网,通讯技术来建构,而不依赖与特定的硬件模块,用户可以基于自身的设备技术架构,简单轻松接入物联网。下图是物联网的核心架构: 1. 四大核心模块 在物联网中存在4大核心模块,那就是设备管理,用户管理,数据传输管理,数据管理,只有具备了这四大核心模块,才能认为是一个完整的物联网平台,而所有其他的功能模块都是基于此四大功能模块的延展。 1.1 设备管理 设备类型管理:定义设备的类型,此功能一般由设备的制造商来定义,一种设备类型最重要的是关联到一套独有的数据解析方法,数据的存储方法,已经设备规格等数据,也只有设备的制造商才可以编辑有关设备类型的数据,而设备的使用者只能浏览设备类型的相关信息 设备管理:设备管理定义设备相关信息,每个设备必须定义其设备类型,设备类型有使用者属性,设备在完成销售,并被使用者激活后设备就属于设备使用者了,这时候设备使用者对设备有完全的控制权,可以控制设备的哪些数据可以被制造商查看,可以被哪些用户查看等权限 1.2 用户管理 组织管理:在物联网平台中一个很重要的观念就是组织,所有的设备,用户,数据都是基于组织的管理的,设备制造商是一个组织,设备的使用者是一个组织,家庭都可以是一个组织。 用户管理:用户是基于一个组织下的人员构成,每个组织下面都有管理员角色,管理员可以为其服务的组织添加不通的用户,并分配每个用户不同的权限。一个用户也可以属于多个不同的组织,并且扮演不同的组织 用户组:一组用户,也是基于组织的用户组管理,同一用户组的用户拥有相同的权限 权限管理:同样是基于组织的权限管理,主要是针对对象级别的权限细分,如设备的浏览权限,可以控制每个用户是否看到这个设备;设备数据浏览权限定义是否可以查看设备的运行数据 1.3 数据传输管理 1.31 基本格式 数据传输管理,定义针对一类型设备的数据传输协议,基本格式是: 每一个设备有厂商唯一的序列号,因为每个制造商有自己的编码格式,固此序列号没有固定格式。 命令码,为此条数据的作用,比如是上传数据,或者服务器下发给设备的命令等,一般采用2位数字编码00~99 数据,此部分是此条报文,所包含的数据部分,每个协议可以定义不同的解析方式,比如服务器在收到数据包后,会根据预先定义好的解析方式解析数据字段,并按照规则存储 1.32 数据解析定义 每种设备类型可以定义多条命令,每个命令都有自己不同的解析方式,组织的管理员可以为自己的设备类型定义解析方式 服务器接收到数据后,会自动根据预先定义的解析方式解析数据字段 设备开发者要根据在IOT平台定义的数据格式,自行开发自己设备的解析代码 数据字段都按照HEX方式收发 1.33 数据的存储 存储要支持分布式架构,可以为每个设备定义不同的存储位置,在diego iot中数据存储使用mysql数据库,实现不同的设备存储在不同的mysql数据库中 每条数据定义生命周期,在生命结束后,系统将自动删除 1.4 数据管理 权限管理,数据的权限在物联网平台中是至关重要,数据属于谁是一个非常重要的概念,只有设备的拥有者才能定义数据可以给谁看 大数据,物联网数据本身就是海量的数据,我们可以借助一些开源的大数据平台来实现数据的可视化分析,只有经过分析的数据才是有价值的数据 数据的导出,用户可以导出数据到本地做分析 2.网络通讯 现在所有的云端的物联网平台和设备之间的通讯,本质上都是建构在TCP/IP协议之上的,只是对数据包的再封装而已,基于此我们可以是用wifi,4g来实现设备和云平台的通讯,不过设备与设备之间的通讯,可以有wifi,Bluetooth,zigbee等,下面介绍几种常用的通讯架构 2.1 基于移动3/4G通讯 此架构是最简单的架构,设备就如同我们的手机,基于移动通讯来上网,其主要需要考虑如下几点 每个设备都需要一个SIM卡,可以到移动服务器商办理专门针对物联网的SIM卡 数据流量问题,这种架构完全是走数据流量,如果有视频数据,将会产生比较大的流量费用,这都是要考虑的 通讯质量问题,这完全依赖于移动服务商的网络覆盖状况,就如同我们手机一样,在有些环境下是没有信号的,也就没办法收发数据 2.2 基于wifi局域网 此中架构,适合于所有的物联网设备都是运行在一个局部环境中,设备通过wifi或者有线连接到路由器,而由路由器统一连接的物联网服务器,就如同我们家中装一个wifi路由器上网一样的架构,需要注意的事项: 局域网内的智能设备,是没有公网独立的ip的,只有一个局域网内的ip,带来的问题就是,设备可以直接给物联网服务器发送数据包,而物联网服务器是不能直接给设备发送数据包,就因为设备没有公网独立ip 功耗问题,对于使用wifi接入的设备,最好不是电池供电,因为wifi的功耗比较大 干扰问题,如果在大型的厂房部署这种架构,一定要考虑,厂房内是否有强干扰源,如电磁干扰,可以考虑采用工业级的无线路由器,一般抗干扰能力比较强 2.3 基于蓝牙通讯 一般的基于蓝牙的物联网,会考虑通过蓝牙网关来部署 蓝牙由于其点对点的通讯方式,所以要考虑如下问题: 蓝牙网关的容量问题,也就是一个蓝牙网关能接入几个蓝牙设备,这取决于蓝牙网关中使用了多少个蓝牙设备 蓝牙的配对问题,蓝牙设备直接的通讯都首先配对才能通讯,如果实现自动配对,如果不能自动配对,大规模部署,将是一个很麻烦的事情 还有一种场景是针对不需要一直在线的物联网设备,而只是在某种特殊需求的情况下,需要连上服务器,这中场景下,我们可以通过手机的蓝牙功能来让设备接入物联网 蓝牙手环是这种架构的一种典型应用模式

统计信息

已有502人来访过

  • 芯币:5673
  • 好友:--
  • 主题:2462
  • 回复:164
  • 课时:--
  • 资源:--

留言

你需要登录后才可以留言 登录 | 注册


seaskyland 2020-7-24
你好,你发表的C2000的软件串口(SCI)实现方法里面的图片内容都打不开,能给我发一下看看吗,想学习一下,谢谢,邮箱地址:13058594@qq.com
seaskyland 2020-7-24
你好,你发表的C2000的软件串口(SCI)实现方法里面的图片内容都打不开,能给我发一下看看吗,想学习一下,谢谢
桃子瑶瑶 2019-10-12
你的实验很有意思
查看全部