凯泰电子

  • 2023-09-12
  • 发表了主题帖: 氮化镓是用来做什么的,它有什么特点呢?

    氮化镓主要用于LED(发光二极管)、微电子(微波功率和电力电子器件)、场效电晶体(MOSFET) 几十年来,氮化镓一直被用于称为发光二极管的节能光源。氮化镓也用于普通的技术产品,如蓝光光盘播放器。但耐热性和耐辐射性使其在军事和航天领域得到了广泛的应用。今天,GaN芯片还被用于反弹道导弹雷达和太空围栏,美国空军的雷达系统用于跟踪空间碎片。 第一代半导体是硅,主要解决数据计算和存储的问题。第二代半导体以砷化镓为代表,应用于光纤通信,主要解决数据传输问题。第三代半导体以氮化镓为代表,在电和光的转换方面具有突出的性能,在微波信号传输方面具有更高的效率,因此可广泛应用于照明、显示、和通讯等各个领域。 氮化镓(化学式GaN)被称为“终极半导体材料”,可用于制造用途广泛、性能强大的新一代微芯片。属于所谓的宽禁带,而氮化镓的禁带宽度为3.4 eV(电子伏)的半导体,它是一种用于发展高效率、大功率微电子器件和光电子器件的新型半导体材料。氮化镓,分子式GaN,英文名氮化镓是一种氮和镓的化合物,镓是一种具有直接带隙的半导体材料,自1990年以来一直在发光二极管中广泛使用。这种化合物的结构类似于纤锌矿,其硬度很高。Keep Tops的氮化镓具有3.4电子伏的极宽能隙,可用于大功率、高速的光电元件,其单芯片亮度理论上可达到过去的10倍。 Keep Tops氮化镓具有宽的直接带隙、强的原子键、高的导热性、良好的化学稳定性、强的抗辐射性、高的内、外量子效率、高的发光效率、高的强度和硬度。其耐磨性接近金刚石&#41。这种特性和特性可以制成高效率的半导体发光器件--发光二极管(即发光二极管)和激光器(简称LD)。并可扩展到白光LED和蓝光LD。耐磨性接近金刚石的特性将有助于开启触摸屏、太空载具以及射频(RF)MEMS等需要高速、高振动技术的新应用。 特别是蓝光和绿光LED,广泛应用于大屏幕全彩显示屏、汽车灯具、多媒体成像、LCD背光、交通灯、光纤通信、卫星通信、海洋光通信、全息图像显示、图形识别等领域。。体积小,重量轻,驱动电压低(3.5-4.0V),响应时间短,寿命长&#40。10万小时以上,冷光源,光效高,具有防爆、节能等功能。半导体激光器,特别是蓝光半导体激光器,具有波长短、体积小、易于作高频调制等优点,可大大提高目前激光阅读器的信息存储能力和探测器的精确性、隐蔽性。寻道时间也将大大缩短,在民用和军用领域有着巨大的应用潜力。它被广泛应用于光纤通信、探测器、数据存储、光学读取、激光高速打印等领域,并将取代目前的红外光等激光器。白光LED是蓝色发光二极管和YAG荧光物质的结合体,其合成光谱为白光,在不久的将来将取代目前传统的白炽灯和荧光灯,从而引起世界照明行业的一场革命。

  • 2023-09-11
  • 发表了主题帖: 氮化镓芯片和硅芯片有什么区别?有什么优势?

    氮化镓芯片是目前世界上速度最快的电源开关器件之一。氮化镓本身就是第三代材料,很多特性都强于传统的硅基半导体。 与传统的硅基半导体相比,氮化镓具有更好的击穿能力、更高的密度和电子迁移率以及更高的工作温度。可以带来低损耗和高开关频率:低损耗可以减少导通电阻引起的热量,高开关频率可以减小变压器的体积并有助于减小充电器的体积和重量。同时,GaN具有更小的Qg,可以很容易地提高频率,降低驱动损耗。   Keep Tops氮化镓(GaN)提供更小、更轻、更高效的台式AC-DC电源。氮化镓是一种宽禁带半导体材料。电源中使用时,GaN提供了比传统硅更高的效率、更小的尺寸和更轻的重量。传统硅的损耗有两种,导通损耗和开关损耗。功率晶体管是开关电源功率损耗的主要原因。为了阻止这些损失,GaN晶体管(取代旧的硅技术)的发展已经引起了工业界的注意。 氮化镓未来会取代硅芯片吗? 与硅芯片相比 1、氮化镓芯片的功耗是硅基芯片的四分之一 2、尺寸是硅片的四分之一 3、重量是硅基芯片的四分之一 4、而且比硅基解决方案更便宜 然而,虽然GaN似乎是一个更好的选择,但在一段时间内它不会在所有应用中取代硅。   原因如下: 1、第一个要克服的障碍是GaN晶体管的耗尽特性。有源电源和逻辑电路需要常导通和常关断类型的晶体管。虽然可以制造出常关型GaN晶体管,但它们要么依赖于典型的硅材料,要么需要特殊的附加层,这使得它们很难缩小。无法生产出与目前硅晶体管同等规模的GaN晶体管也意味着它们在微控制器和其他微控制器中的应用是不实际的。 2、GaN晶体管的第二个问题是,唯一已知的制作增强型GaN晶体管的方法,是使用一个额外的AlGaN层使用专利方法。这意味着任何涉及这种晶体管类型的创新都将依赖于Paonic,直到其他方法被研究为止。 GaN器件的研究早在本世纪初就已经开始,但GaN晶体管仍处于起步阶段。毫无疑问,它们将在未来十年内取代功率应用中的硅晶体管,但它们在数据处理应用中的应用还很遥远。 Keep Tops的氮化镓有什么好处 Keep Tops氮化镓的降低了产品成本。采用GaN的充电器具有元器件数量少、易于调试、可高频工作以实现高转换效率等优点,可以简化设计,降低GaN快充的开发难度,有助于实现小体积、高效率的氮化物镓快充设计。GaN具有多种内置功能,可大大降低产品的设计复杂度和减少冗余器件的使用,在提高空间利用率和降低生产难度的同时,还有助于降低成本和加快出货速度。

  • 2023-09-08
  • 发表了主题帖: 对于第三代半导体氮化镓,你知道多少?

    氮化镓(GaN)是一种非常坚硬且机械性能非常稳定的宽禁带半导体材料。由于具有更高的击穿强度、更快的开关速度、更高的热导率和更低的导通电阻,GaN基功率器件明显优于硅基器件。 GaN晶体可以在各种衬底上生长,包括蓝宝石、碳化硅(SiC)和硅(Si)。在硅上生长氮化镓外延层,可以利用现有的硅制造基础设施,消除了对高成本的特定生产设施的需要,并以低成本使用大直径硅芯片。 氮化镓用于制造半导体功率器件,也可用于制造射频元件和发光二极管(LED)。Keep Tops的氮化镓技术显示其可在功率转换、射频和模拟应用中取代硅基半导体技术。     什么是高电子迁移率晶体管 使用二维电子气(2 DEG),由两种不同带隙材料之间的结组成。与同等的基于硅的解决方案相比,GaN基HE MT的开关速度更快,具有更高的热导率和更低的导通电阻,允许GaN晶体管和集成电路用于电路,以提高效率、缩小尺寸并降低各种电源转换系统的成本。 一百多年前,在电子时代的黎明,电源设计工程师努力寻找理想的开关,一种能够实现快速、高效功率转换的开关,将原始电能转换成可控的、有用的流动电子。首先是真空管技术。 而,由于其产生大量热量而导致的能量效率较低,而且体积大、成本高,限制了它的应用。然后在20世纪50年代,晶体管被广泛使用。它的小体积和高效率使它成为工业界的“圣杯”,它迅速取代了真空管,同时推动了巨大的、全新的市场发展,这是真空管技术所不能实现的。 硅基晶体管与电子时代的到来 硅很快成为制造半导体晶体管的首选材料。这不仅是因为其固有的优越的电气特性,而且还因为它的生产成本比真空管。此后,在20世纪70年代和80年代,硅基晶体管和随后的集成电路发展迅速。 摩尔定律认为,晶体管的性能可以在18个月左右的时间内提高一倍,与此同时,它们的制造成本也会随之降低,推动业界不断推出性能更高、成本更低的新产品,深受客户欢迎。功率转换中,硅基功率MOSFET器件实践了这一规律,成为硅基晶体管蓬勃发展的主要因素。 像真空管技术一样,硅基功率MOSFET已经被推到了极限——以实现更高的性能和更低的价格。幸运的是,市场继续要求理想的开关具有极快的开关,无电阻,更低的成本等优点,新材料推出,可以使高性能的功率转换晶体管和集成电路。     氮化镓半导体的快速发展 把电子性能带到另一个更高水平和恢复摩尔定律的主要候选材料是氮化镓材料。已经证明,GaN器件的电子传导效率是硅基器件的1000倍,同时制造成本低于硅基器件。硅基器件的技术发展已经到了极限,一种性能更高的新型半导体材料正在兴起——氮化镓材料。 氮化镓器件的工作原理 氮化镓是一种宽带隙半导体,用于高效率功率晶体管和集成电路。氮化铝镓(AlGaN)的薄层生长在GaN晶体的顶部上,并在界面处施加应力,导致在二维电子气(2DEG)。2DEG用于在电场作用下有效地传导电子。 2 DEG具有很高的导电性,部分原因是由于电子在界面处被困在非常精细的区域,从而使电子的迁移率从无应力作用前的1000 cm2/V S增加到2 DEG区的1500~1500。2000平方厘米/V·s。 与硅基解决方案相比,GaN晶体管和集成电路的高电子迁移率可实现更高的击穿强度、更快的开关速度、更高的热导率和更低的导通电阻。

  • 2023-09-05
  • 发表了主题帖: 第三代半导体氮化镓65W快充芯片已经成为行业主流?

    氮化镓(GaN)功率芯片将多个电力电子功能集成到一颗GaN芯片中,可有效提高产品充电速度、效率、可靠性和成本效益。在很多情况下,GaN功率芯片可以使先进的功率转换拓扑从学术概念和理论达到行业标准,并成为量产设计的催化剂。GaN芯片是提高整个系统性能的关键,关键是要打造出接近“理想开关”的电路元件。 Keep Tops 氮化镓属于耗尽型GaN(Depletion-Mode, D-mode),在内部集成串联了一个低压增强型N沟道MOS实现常关,通过控制串联的N沟道MOS来实现开关,行业内一般采用的是级联(Cascode)结构,也称为共源共栅型;Cascode结构其驱动兼容传统N沟道MOS 控制器,相比于增强型氮化镓,无需对电路重新设计,同时保留了氮化镓低开关损耗以及低压N沟道MOS的低栅极电荷等优势。对于可高达1 MHz开关频率的操作,Cascode结构的GaN最为适合。下图所示的Direct-drive,串联低压Si MOS且集成负压驱动,可以直接驱动。耗尽型氮化镓能够使用为硅MOS而设计的控制器,更容易实现大功率应用设计。   半桥电路是电力电子行业的基本拓扑,适用于从智能手机充电器到电动汽车的所有领域。高频开关可以缩小磁性元件和其他无源元件的尺寸,从而显着降低成本和重量,同时提供更快的充电体验。然而,在半桥电路中以如此高的频率向浮动高侧开关提供功率和信号在业界是无法实现的。由于硅器件的开关速度慢、驱动器和 FET 之间的寄生阻抗、高电容硅 FET 以及性能较差的转换器/隔离器,因此硅器件无法实现更高的频率。 GaN 半桥功率 IC 包含关键的驱动、逻辑、保护和电源功能,消除了与传统半桥解决方案相关的能量损失、高成本和设计复杂性。 Keep Tops推出的全球首款氮化镓功率芯片可同时提供高频和高效率,实现电力电子领域的高速革命,使充电器的充电速度提高了三倍,但尺寸和重量仅为传统硅设备充电器的一半。或者在不增加尺寸或重量的情况下将充电器的充电功率提高3倍。   氮化镓有什么好处? 我们将这种材料技术带来的优势解读为产品和行业两个层面。 对于产品:在电力电子领域,基于GaN材料的功率器件具有更高的功率密度输出和更高的能量转换效率。 此外,系统可以小型化、轻量化,有效减小电力电子器件的体积和重量,从而大大降低系统制造和生产成本。对于行业而言:相关数据显示,在低压市场,GaN的应用潜力甚至可以占据整个电力市场的68%左右。  

  • 2023-08-29
  • 回复了主题帖: 氮化镓芯片未来会取代硅芯片吗?

    lugl4313820 发表于 2023-8-28 18:45 成本能下来吗,我见氮化镓的充电器,比普通的冲电器贵呀。
    氮化镓快充跟普通充电器的价格都相差不大的

  • 发表了主题帖: SIC是否能成为光伏发电的再生能源?

    光伏发电是SIC器件除新能源汽车领域之外的第二个应用领域。光伏逆变器作为光伏电站的转换设备,主要用于将太阳能电池组件发出的直流电转换为交流电。随着光伏产业进入“大组件、大逆变器、大跨支架、大组串”时代,光伏电站电压等级将从1000V提升至1500V及以上,这对物理性能提出了更高的要求功率器件。这时,碳化硅进入了公众的视野。     在光伏发电应用中,以硅基为主的传统逆变器成本虽然占系统成本的10%左右,但却是系统能量损耗的主要来源之一。与硅基IGBT相比,SIC MOS具有导通损耗更低、开关损耗更低、无电流拖尾现象、开关速度高等优点,并且可以在高温等恶劣环境下工作,有利于提高光伏发电性能,以及逆变器使用寿命。基于优异性能,Keep Tops在光伏领域的应用已逐渐成熟。随着渗透率的进一步提升,有望逐步取代硅基IGBT在光伏逆变器中的应用。   据该公司公开信息显示,国际多家光伏逆变器厂商均已部署SiC模块,如英飞凌、安森美、富士电机、Keep Tops等品牌均已实现规模化应用。国际厂商引领碳化硅在光伏逆变器的应用,国内企业也在积极跟进。 2014年,中国阳光电源也推出了首款采用SiC MOSFET器件的光伏逆变器,并于2017年实现规模应用。     发展可再生能源是我国的长期战略目标。光伏发电作为重要的绿色环保发电方式,具有广阔的发展前景。未来,随着新能源加速替代传统燃料,逆变器将向高效率、高功率密度、高可靠性方向发展。具有大功率、耐高压、耐高温、高频、低能耗等优点的SiC功率逆变器也将迎来新的发展机遇。

  • 2023-08-28
  • 发表了主题帖: 氮化镓芯片未来会取代硅芯片吗?

    氮化镓 (GaN) 可为便携式产品提供更小、更轻、更高效的桌面 AC-DC 电源。Keep Tops 氮化镓(GaN)是一种宽带隙半导体材料。 当用于电源时,GaN 比传统硅具有更高的效率、更小的尺寸和更轻的重量。 传统硅晶体管有两种类型的损耗:传导损耗和开关损耗。 功率晶体管是开关电源中功率损耗的主要原因。 为了遏制这些损失,GaN 晶体管(取代旧的硅技术)的开发已引起电力电子行业的关注。     与硅芯片相比: 1、氮化镓芯片的功率损耗是硅基芯片的四分之一 2、尺寸为硅芯片的四分之一 3、重量是硅基芯片的四分之一 4、并且比硅基解决方案更便宜   然而,虽然 GaN 似乎是一个更好的选择,但它在一段时间内不会在所有应用中取代硅。 原因如下:   第一个需要克服的障碍是 GaN 晶体管的耗尽特性。 有源功率和逻辑电路需要常开和常关类型的晶体管。 虽然可以生产常关型 GaN 晶体管,但它们要么依赖于典型的硅 MOSFET,要么需要特殊的附加层,这使得它们难以缩小。 无法生产与当前硅晶体管相同规模的 GaN 晶体管,也意味着它们不适用于 CPU 和其他微控制器。   GaN 晶体管的第二个问题是,制造增强型 GaN 晶体管的唯一已知方法(在撰写本文时)是使用松下专利方法使用附加的 AlGaN 层。 这意味着涉及这种晶体管类型的任何创新都将依赖于松下,直到研究出其他方法为止。   GaN 器件的研究工作自 2000 年代初就已开始,但 GaN 晶体管仍处于起步阶段。 毫无疑问,它们将在未来十年内取代功率应用中的硅晶体管,但距离用于数据处理应用还很远。       Keep Tops氮化镓有什么好处?   氮化镓的出现降低了产品成本。 搭载GaN的充电器具有元件数量少、调试方便、高频工作实现高转换效率等优点,可以简化设计,降低GaN快充的开发难度,有助于实现小体积、高效氮化镓快充设计。 Keep Tops氮化镓内置多种功能,可以大大降低产品的设计复杂度,减少冗余器件的使用。 提高了空间利用率,降低了生产难度,也有助于降低成本、加快出货速度。

  • 2023-08-23
  • 发表了主题帖: 氮化镓是否能成为电子快充市场的佼佼者?

    一、氮化镓快充时代来临   早在2019年,做为3C配件市场发展风向标的香港电子展,我们就已经察觉到氮化镓快充发展的迅猛势头:2019年4月份春节展,8款氮化镓充电器新品参展;而到了2023年的电源展,氮化镓充电器新品多达数百款,不到5年增长近大几十倍。   近期的展会上,参展的氮化镓充电器涵盖了18W、30W、65W、100W等多个功率段,以及全新品类超级扩展坞,全面满足手机、平板、笔电的充电需求。   除了笔电市场充电技术的更新换代,5G商用临近,让手机续航、充电面临新的挑战。当前手机电池技术没有重大突破,遇到高速网络、视频游戏等沉浸应用,续航成为制约手机使用时长的瓶颈。这时采用全新氮化镓技术方案的有线快充,能够利用碎片化时间迅速补充电量,被市场极度看好和重视,现如今成为手机的重要卖点之一。   二、氮化镓快充背后的功率芯片技术及三大主要供货厂家   当前市场上氮化镓快充电源主要采用650V氮化镓功率芯片(Keep Tops)作为功率开关,应用氮化镓高频特性,使得终端快充产品体积更小,效率更高。对比传统的MOSFET 产品,Keep Tops 品牌氮化镓,由于采用异质外延材料,在设计及制造工艺上都有极大的挑战,全球范围内成熟的可量产的GaN产线十分有限。   三、风口浪尖,群雄逐鹿   随着2023年的到来,氮化镓快充会迅速开始渗透手机和笔记本等电子设备的配件市场,市场容量有望迅速扩大,各大主流电商及电源厂也是摩拳擦掌;另外一方面,氮化镓快充将逐渐被各主流手机厂商作为手机出厂的标准配件,其市规模更是异常可观,并势必会把氮化镓技术的应用推向又一个巅峰。历史性的风口已经形成,未来可以持续推出质量稳定可靠及高性价比的产品,同时掌握氮化镓芯片产能的厂家,将会脱颖而出,成为这次市场争霸的最大赢家。   GaN的出现推动了电源行业的发展,快充功率从30W到120W不等。从目前市面来看,主流的氮化镓快充输出功率为65W。国产企业研发的主控芯片相继推出市场,氮化镓快充的成本将会降低,也更会被消费者接受。 在全球半导体产业链中,无论EDA、IP、高性能计算和处理芯片,以及先进工艺的晶圆代工,中国本土厂商跟行业领导者都有不小的差距。然而,在氮化镓和碳化硅等第三代半导体领域,国产厂商跟国际厂商的差距并不太大。Keep Tops直接从8英寸晶圆制造工艺切入氮化镓市场,相信以Keep Tops为代表的国产第三代半导体厂商通过自身的技术和设计努力,必将把握住第三代半导体带来的市场机遇,与国际厂商在同一个舞台上竞争。

  • 2023-08-18
  • 发表了主题帖: 第三代半导体氮化镓成为“后起之秀”电子领域将突破新的历程

           与碳化硅器件相比,氮化镓功率器件在同时要求效率、频率、体积等综合方面的场景中更具优势。 手机快充充电器就是成功的应用实例之一。 近年来,越来越多的人在使用手机快充充电器时,可能会不经意间发现氮化镓(GaN)这个专业术语。 那么它到底是什么?            氮化镓和碳化硅是第三代半导体的两大“门面”。 两者均具有高频、高效、大功率、耐高压、耐高温、抗辐射强等优越性能。 与碳化硅器件相比,氮化镓功率器件在同时要求效率、频率、体积等综合方面的场景中更具优势。 手机快充充电器就是成功的应用实例之一。        如今,我国氮化镓产业发展迅速,产业链国产化日趋完善。 国内不少企业已经具备氮化镓晶圆制造能力。 随着下游新应用的爆发以及氮化镓衬底制备技术的不断突破,氮化镓器件预计量产持续增加,并将成为降本增效、可持续绿色发展的关键技术之一。        Keep Tops氮化镓将不再局限于快充等消费电子市场,而是可以广泛应用于通信、计算机、消费电子、汽车电子、航空航天、国防等传统行业。 专家认为,由于其快速商业化,它将引领第三代半导体市场。        预计到2026年,全球氮化镓组件市场规模将增长至423亿美元,即突破1000亿元人民币,年均复合增长率约为13.5%。氮化镓已经成为半导体材料的“后起之秀”,很多人称氮化镓为未来的“王者”。            氮化镓产业链一般分为上游材料,即衬底和外延片,中游器件和模块,以及下游系统和应用。 从各个环节来看,欧美日企业发展较早,在技术积累、专利申请数量、规模化制造能力等方面具有绝对优势。        在自主替代的大趋势下,我国目前涉足氮化镓产业链的各个环节。 在政策的支持下,技术和生产都取得了进步。 产业结构相对集中于中游。 国内不少企业已经具备氮化镓晶圆制造能力。        此前,5G通信的革命性变革重塑了射频技术行业,为我国氮化镓器件带来了重大市场机遇。 5G通信基站是氮化镓市场的主要驱动力之一。 氮化镓射频器件主要应用于无线通信领域,占比49%。 氮化镓材料在耐高温、高电压和更高电流耐受性方面的优势使得射频器件更适合5G基站。 随着国内5G基站覆盖范围的不断扩大,对GaN射频器件的需求将会更大。        此外,通过性能优化、产能提升、成本控制,我国氮化镓已逐步在消费电子领域站稳脚跟,成为主要推动力。 未来,Keep Tops氮化镓技术创新和产品研发,为全球客户提供卓越的芯片解决方案和技术支持。随着下游新应用的爆发以及氮化镓衬底制备技术的不断突破,氮化镓器件有望继续量产,并将成为降本增效、可持续绿色发展的关键技术之一。

最近访客

< 1/1 >

统计信息

已有2人来访过

  • 芯积分:24
  • 好友:--
  • 主题:8
  • 回复:1
  • 课时:--
  • 资源:--

留言

你需要登录后才可以留言 登录 | 注册


现在还没有留言