中信华

个性签名:中信华-双面板低至每平米180元

  • 2019-07-18
  • 发表了主题帖: 减少PCB板电磁干扰的4个设计技巧

        电子设备的电子信号和处理器的频率不断提升,电子系统已是一个包含多种元器件和许多分系统的复杂设备。高密和高速会令系统的辐射加重,而低压和高灵敏度会使系统的抗扰度降低。     因此,电磁干扰(EMI)实在是威胁着电子设备的安全性、可靠性和稳定性。我们在设计电子产品时,PCB板的设计对解决EMI问题至关重要。     本文主要讲解PCB设计时要注意的地方,从而减低PCB板中的电磁干扰问题。     电磁干扰(EMI)的定义     电磁干扰(EMI,ElectroMagneTIcInterference),可分为辐射和传导干扰。辐射干扰就是干扰源以空间作为媒体把其信号干扰到另一电网络。而传导干扰就是以导电介质作为媒体把一个电网络上的信号干扰到另一电网络。在高速系统设计中,集成电路引脚、高频信号线和各类接插头都是PCB板设计中常见的辐射干扰源,它们散发的电磁波就是电磁干扰(EMI),自身和其他系统都会因此影响正常工作。     针对电磁干扰(EMI)的PCB板设计技巧     现今PCB板设计技巧中有不少解决EMI问题的方案,例如:EMI抑制涂层、合适的EMI抑制零件和EMI仿真设计等。现在简单讲解一下这些技巧。     1、共模EMI干扰源(如在电源汇流排形成的瞬态电压在去耦路径的电感两端形成的电压降)     在电源层用低数值的电感,电感所合成的瞬态信号就会减少,共模EMI从而减少。     减少电源层到IC电源引脚连线的长度。     使用3-6mil的PCB层间距和FR4介电材料。     2、电磁屏蔽     尽量把信号走线放在同一PCB层,而且要接近电源层或接地层。     电源层要尽量靠近接地层     3、零件的布局(布局的不同都会影响到电路的干扰和抗干扰能力)     根据电路中不同的功能进行分块处理(例如解调电路、高频放大电路及混频电路等),在这个过程中把强和弱的电信号分开,数字和模拟信号电路都要分开     各部分电路的滤波网络必须就近连接,这样不仅可以减小辐,这样可以提高电路的抗干扰能力和减少被干扰的机会。     易受干扰的零件在布局时应尽量避开干扰源,例如数据处理板上CPU的干扰等。     4、布线的考虑(不合理的布线会造成信号线之间的交叉干扰)     不能有走线贴近PCB板的边框,以免于制作时造成断线。     电源线要宽,环路电阻便会因而减少。     信号线尽可能短,并且减少过孔数目。     拐角的布线不可以用直角方法,应以135°角为佳。     数字电路与模拟电路应以地线隔离,数字地线与模拟地线都要分离,最后接电源地。     减少电磁干扰是PCB板设计重要的一环,只要在设计时多往这一边想自然在产品测验如EMC测验中便会更易合格。

  • 2019-07-16
  • 发表了主题帖: 四层PCB打样注意事项

        四层板指的是PCB用4层的玻璃纤维做成,四层PCB打样要注意哪些事项呢?一般来说,包含两个群体,一个是工程师群体,另一个是PCB打样厂家。     四层PCB打样注意事项     作为工程师群体,四层PCB打样注意事项有:     1、慎重选择打样数量,以有效控制成本。     2、特别确认器件封装,避免因封装错误导致打样失败。     3、进行全面的电气检查,提升PCB板的电气性能。     4、做好信号完整性布局,降低噪声提升PCB稳定。     作为PCB打样厂家,四层PCB打样注意事项有:     1、认真检查PCB打样文件资料,避免资料问题。     2、全面进行工艺核准,与自已厂家进行工艺配置。     3、控制好生产数量,减低成本并保重质量。     4、与打样客户进行注意事项沟通,提前预防事故发生。

  • 2019-07-11
  • 发表了主题帖: 沉金线路板主要用途,与其他工艺的区别

        线路板表面处理过程中有一种使用非常普遍的工艺,被称为沉金工艺。制作中,沉金板的成本比较高,一般情况下不会用到沉金工艺。那我们该如何去区分哪种PCB板需要沉金?哪种线路板不需要沉金?可以根据以下几种情况进行分析判断。     沉金线路板主要用途分析     1.板子有金手指需要镀金,但金手指以外的版面可以根据情况选择喷锡或者沉金等工艺,也就是通常的“沉金+镀金手指”工艺和“喷锡+镀金手指”工艺,偶尔少数设计者为了节约成本或者时间紧迫选择整版沉金方式来达到目的,不过沉金达不到镀金厚度,如果金手指经常插剥就会出现连接不良情况。     2.板子的线宽、焊盘间距不足,这种情况采用喷锡工艺往往生产难度大,所以为了板子的性能通常采用沉金等工艺,就基本不会出现这种情况。     3.沉金或者镀金由于焊盘表面有一层金,所以焊接性良好,板子性能也稳定。缺点是沉金比常规喷锡要费成本,如果金厚超出PCB厂常规通常会更贵。镀金就更加贵,不过效果很好。     了解了以上3种情况,就知道在哪些情况下需要做成沉金线路板了。     沉金工艺的是在印制线路表面上沉积颜色稳定,光亮度好,镀层平整,可焊性良好的镍金镀层,沉金工艺与其它工艺有什么区别呢?     PCB沉金工艺与其它工艺的区别     1、散热性比较     金的导热性是好的,其做的焊盘因良好的导热性使其散热性最好。散热性好的PCB板温度低,芯片工作就越稳定,沉金板散热性良好,可在Notebook板上CPU承受区、BGA式元件焊接基地上使用全面性散热孔,而OSP和化银板散热性一般。     2、焊接强度比较     沉金板经过三次高温后焊点饱满,光亮OSP板经过三次高温后焊点为灰暗色,类似氧化的颜色,经过三次高温焊接以后可以看出沉金板卡焊点饱满、光亮焊接良好并对锡膏和助焊剂的活性不会影响,而OSP工艺的板卡焊点灰暗没有光泽,影响了锡膏和助焊剂的活性,易于造成空焊,返修增多。     3、可电测性比较     沉金板在生产和出货前后可直接进行测量,操作技术简单,不受其它条件影响;OSP板因表层为有机可焊膜,而有机可焊膜为不导电膜,因此根本无法直接测量,须在OSP前先行测量,但OSP后容易出现微蚀过度后顾之忧,造成焊接不良;化银板表面为皮膜稳定性一般,对外界环境要求苛刻。     4、工艺难度和成本比较     沉金工艺板卡工艺难度复杂,对设备要求较高,环保要求严格,并因大量使用金元素成本在无铅工艺板卡中最高;化银板卡工艺难度稍低,对水质及环境要求相当严格,成本较沉金板稍低;OSP板卡工艺难度最简单,因此成本也最低。

  • 2019-07-09
  • 发表了主题帖: PCB安全间距如何设计?

        PCB设计中有诸多需要考虑到安全间距的地方。在此,暂且归为两类:一类为电气相关安全间距,一类为非电气相关安全间距。     电气相关安全间距     1导线间间距     就主流PCB生产厂家的加工能力来说,导线与导线之间的间距最小不得低于4mil。最小线距,也是线到线,线到焊盘的距离。从生产角度出发,有条件的情况下是越大越好,比较常见的是10mil。     2焊盘孔径与焊盘宽度     就主流PCB生产厂家的加工能力来说,焊盘孔径如果以机械钻孔方式,最小不得低于0.2mm,如果以镭射钻孔方式,最小不得低于4mil。而孔径公差根据板材不同略微有所区别,一般能管控在0.05mm以内,焊盘宽度最小不得低于0.2mm。     3焊盘与焊盘的间距     就主流PCB生产厂家的加工能力来说,焊盘与焊盘之间的间距不得低于0.2mm。     4铜皮与板边的间距     带电铜皮与PCB板边的间距最好不小于0.3mm。在Design-Rules-Boardoutline页面来设置该项间距规则。     如果是大面积铺铜,通常与板边需要有内缩距离,一般设为20mil。在PCB设计以及制造行业,一般情况下,出于电路板成品机械方面的考虑,或者为避免由于铜皮裸露在板边可能引起卷边或电气短路等情况发生,工程师经常会将大面积铺铜块相对于板边内缩20mil,而不是一直将铜皮铺到板边沿。     这种铜皮内缩的处理方法有很多种,比如板边绘制keepout层,然后设置铺铜与keepout的距离。此处介绍一种简便的方法,即为铺铜对象设置不同的安全距离,比如整板安全间距设置为10mil,而将铺铜设置为20mil,即可达到板边内缩20mil的效果,同时也去除了器件内可能出现的死铜。     非电气相关安全间距     01     字符宽度高度及间距     文字菲林在处理时不能做任何更改,只是将D-CODE小于0.22mm(8.66mil)以下的字符线条宽度都加粗到0.22mm,即字符线条宽度L=0.22mm(8.66mil)。     而整个字符的宽度W=1.0mm,整个字符的高度H=1.2mm,字符之间的间距D=0.2mm。当文字小于以上标准时,加工印刷出来会模糊不清。     02     过孔到过孔的间距     过孔(VIA)到过孔间距(孔边到孔边)最好大于8mil。     03     丝印到焊盘距离     丝印不允许盖上焊盘。因为丝印若盖上焊盘,在上锡的时候丝印处将不能上锡,从而影响元器件装贴。一般板厂要求预留8mil的间距为好。如果PCB板实在面积有限,做到4mil的间距也勉强可以接受。如果丝印在设计时不小心盖过焊盘,板厂在制造时会自动消除留在焊盘上的丝印部分以保证焊盘上锡。     当然在设计时具体情况具体分析。有时候会故意让丝印紧贴焊盘,因为当两个焊盘靠的很近时,中间的丝印可以有效防止焊接时焊锡连接短路,此种情况另当别论。     04     机械上的3D高度和水平间距     PCB上器件在装贴时,要考虑到水平方向上和空间高度上会不会与其他机械结构有冲突。因此在设计时,要充分考虑到元器件之间、PCB成品与产品外壳之间和空间结构上的适配性,为各目标对象预留安全间距,保证在空间上不发生冲突即可。 此内容由EEWORLD论坛网友中信华原创,如需转载或用于商业用途需征得作者同意并注明出处

  • 2019-07-05
  • 发表了主题帖: pcb阻焊层开窗是什么意思?PCB阻焊层开窗的原因

        阻焊层的概念     阻焊层就是soldermask,是指印刷电路板子上要上绿油的部分。实际上这阻焊层使用的是负片输出,所以在阻焊层的形状映射到板子上以后,并不是上了绿油阻焊,反而是露出了铜皮。     阻焊层的工艺要求     阻焊层在控制回流焊接工艺期间的焊接缺陷中的角色是重要的,PCB设计者应该尽量减小焊盘特征周围的间隔或空气间隙。     虽然许多工艺工程师宁可阻焊层分开板上所有焊盘特征,但是密间距元件的引脚间隔与焊盘尺寸将要求特殊的考虑。虽然在四边的qfp上不分区的阻焊层开口或窗口可能是可接受的,但是控制元件引脚之间的锡桥可能更加困难。对于bga的阻焊层,许多公司提供一种阻焊层,它不接触焊盘,但是覆盖焊盘之间的任何特征,以防止锡桥。多数表面贴装的PCB以阻焊层覆盖,但是阻焊层的涂敷,如果厚度大于0.04mm(″),可能影响锡膏的应用。表面贴装PCB,特别是那些使用密间距元件的,都要求一种低轮廓感光阻焊层。     阻焊层的工艺制作     阻焊材料必须通过液体湿工艺或者干薄膜叠层来使用。干薄膜阻焊材料是以0.07-0.1mm(0.03-0.04″)厚度供应的,可适合于一些表面贴装产品,但是这种材料不推荐用于密间距应用。很少公司提供薄到可以满足密间距标准的干薄膜,但是有几家公司可以提供液体感光阻焊材料。通常,阻焊的开口应该比焊盘大0.15mm(0.006″)。这允许在焊盘所有边上0.07mm(0.003″)的间隙。低轮廓的液体感光阻焊材料是经济的,通常指定用于表面贴装应用,提供精确的特征尺寸和间隙。     pcb阻焊层开窗的理解     阻焊开窗是指需要焊接的位置露出铜的部位的大小,即不盖油墨部分的大小,盖线指阻焊油盖住线路部分的大小及多少。盖线距离过小在生产过程中就会造成露线。     PCB阻焊层开窗的原因     1.孔径开窗:是因为有很多客户不需要油墨塞孔,如果不开窗,则油墨会进入孔内。(这是针对小孔)如果大孔塞了油墨进去则客户无法上键。另外如果是化金板的话也必须得开窗     2.PAD(就是铜)开窗:客户需要焊接,表面处理(化金/喷锡等)。

  • 2019-07-04
  • 发表了主题帖: PCB打样时这些方面千万要注意

        哪些人会做PCB打样呢?一般情况,有两个大群体会做这个事情,第一个是以PCB为主的打样厂家,第二个是以设计PCB为主的设计工程师:     首先PCB打样工厂应该注意哪些事项呢?作为PCB打样工厂,首先在客户下单后,我们需要审核所上传文件是否符合工厂的工艺要求、制程能力、上传文件是否存在设计问题,如有上传参数信息和文件不一致的情况,必须第一时间和客户确认以哪个为准进行生产?线路图是否完整?如果不完整,同样需要和客户确认;如果底层丝印和顶层丝印正好相反,询问客户是需要以底为正还是以正为底;还有最重要的就是PCB打样工厂必须保证品质、交期和物流,这也是客户最关注的问题。     PCB打样     打样工厂主要分为以下三种,常见的有专业样板工厂、个别抄板公司、最好的就是正规的PCB工厂,一般来说,正规的PCB工厂都是做长期客户的,打样完成后也会有专业的飞针测试,这样的工厂对于客户来说一定是最有保障的,专业打样工厂一般就是只做一两片小板子,小成本、小制作,做好后也不会有正规的飞针测试,这样的话,如果客户收到样品后出现问题,这样的工厂也不会进行相关的赔偿,因此,我们还是要去选择正规有交期承诺、有品质保障的正规PCB打样工厂去做打样。     PCB设计工程师需要更多注意的是设计过程中的参数信息、数量和元器件封装问题,设计过程中需要对整个线路整体规划,线路是否有短路的地方,电气检查是否到位,在所有的检查完成后,设计工程师首先要确保所建立的封装库中没有的封装,再设计PCB板图时,必须保证图中所需的元器件在封装库中有对应的封装,这样才能方便设计的顺利进行;PCB板的设计参数,设计师需要根据产品电路系统的需求,设计相对应的层数、颜色、尺寸、工艺等;设计完成的PCB板图需要生成网络表;PCB设计图的整体布局可采用自动布局和人工布局的结合方法,将元器件封装模型载入到PCB设计窗口内的合适的位置,从而使元器件的布局更加合理、美观。PCB设计图的布线也是需要注意的,自动布线不成功的情况下,可以进行人工布线;所有设计完成后,设计好的PCB版图保存后再输出设计文件即可。最后还有一个重要的步骤,就是PCB板仿真分析,简单说就是对PCB板的信号仿真,由此来分析整个线路的布局和参数是否合理。最终的目的是考虑PCB的成本合理规划和产品的稳定性能。

  • 2019-07-02
  • 发表了主题帖: 印刷电路板元件之间的接线安排方式介绍

        (1)印刷电路中不允许有交叉电路,对于可能交叉的线条,可以用“钻”、“绕”两种办法解决。即,让某引线从别的电阻、电容、三极管脚下的空隙处“钻”过去,或从可能交叉的某条引线的一端“绕”过去,在特殊情况下如何电路很复杂,为简化设计也允许用导线跨接,解决交叉电路问题。     印刷电路板元件之间的接线安排方式介绍     (2)电阻、二极管、管状电容器等元件有“立式”,“卧式”两种安装方式。立式指的是元件体垂直于电路板安装、焊接,其优点是节省空间,卧式指的是元件体平行并紧贴于电路板安装,焊接,其优点是元件安装的机械强度较好。这两种不同的安装元件,印刷电路板上的元件孔距是不一样的。     (3)同一级电路的接地点应尽量靠近,并且本级电路的电源滤波电容也应接在该级接地点上。特别是本级晶体管基极、发射极的接地点不能离得太远,否则因两个接地点间的铜箔太长会引起干扰与自激,采用这样“一点接地法”的电路,工作较稳定,不易自激。     (4)总地线必须严格按高频-中频-低频一级级地按弱电到强电的顺序排列原则,切不可随便翻来复去乱接,级与级间宁肯可接线长点,也要遵守这一规定。特别是变频头、再生头、调频头的接地线安排要求更为严格,如有不当就会产生自激以致无法工作。     调频头等高频电路常采用大面积包围式地线,以保证有良好的屏蔽效果。     (5)强电流引线(公共地线,功放电源引线等)应尽可能宽些,以降低布线电阻及其电压降,可减小寄生耦合而产生的自激。     (6)阻抗高的走线尽量短,阻抗低的走线可长一些,因为阻抗高的走线容易发笛和吸收信号,引起电路不稳定。电源线、地线、无反馈元件的基极走线、发射极引线等均属低阻抗走线,射极跟随器的基极走线、收录机两个声道的地线必须分开,各自成一路,一直到功效末端再合起来,如两路地线连来连去,极易产生串音,使分离度下降。

  • 2019-06-28
  • 发表了主题帖: PCB连接方法分析

        PCB是电子产品的基本元器件,PCB在电子产品之中必须要与其他器件相互连接在一起,这就是PCB的互连。总的来说,PCB的连接有三个方面:芯片与PCB、PCB内部、PCB与外部器件。     PCB连接方法分析     一、芯片与PCB的互连     芯片与PCB互连,存在的问题是互连密度太高,会导致PCB板材的基本结构成为限制互连密度增长的因素。解决方法是,采用芯片内部的本地无线发射器将数据传送到邻近的电路板上。     二、内部互连     PCB板内的互连,要遵循这些原则:使用高性能PCB,其绝缘常数值按层次受控,以便管理电磁场。避免使用有引线的组件,避免在敏感板上使用过孔加工工艺,因为该工艺会导致过孔处产生引线电感。选择非电解镀镍或浸镀金工艺,能为高频电流提供更好的趋肤效应。     三、外部连接     对外的连接,主要有以下几种:     1、导线焊接     用导线将PCB印制板上的对外连接点与板外的元器件或其他部件直接焊牢即可,不需要任何接插件。     2、排线焊接     常用于两块印制板之间为90度夹角的连接,连接后成为一个整体PCB印制板部件。     3、印制板插座     在比较复杂的仪器设备中,经常采用这种连接方式。从PCB印制板边缘做出印制插头,插头部分按照插座的尺寸、接点数、接点距离、定位孔的位置等进行设计,使其与专用PCB印制板插座相配。     4、标准插针连接     适合用在小型仪器中,通过标准插针将两块印制板连接,两块印制板一般平行或垂直。 此内容由EEWORLD论坛网友中信华原创,如需转载或用于商业用途需征得作者同意并注明出处

  • 2019-06-20
  • 发表了主题帖: 电路板中电镀方法主要的4种方法

        电路板中电镀方法主要有4种分别是:指排式电镀、通孔电镀、卷轮连动式选择镀、刷镀。     下面做一个简单的介绍:     1     指排式电镀     需要将稀有金属镀在板边连接器、板边突出接点或金手指上以提供较低的接触电阻和较高的耐磨性,该技术称为指排式电镀或突出部分电镀。常将金镀在内层镀层为镍的板边连接器突出触头上,金手指或板边突出部分采用手工或自动电镀技术,目前接触插头或金手指上的镀金已被镀姥、镀铅、镀钮所代替。     指排式电镀其工艺如下:     剥除涂层去除突出触点上的锡或锡-铅涂层     清洗水漂洗     擦洗用研磨剂擦洗     活化漫没在10%的硫酸中     在突出触头上镀镍厚度为4-5μm     清洗去除矿物质水     金渗透溶液处理     镀金     清洗     烘干     2     通孔电镀     有多种方法可以在基板钻孔的孔壁上建立一层合乎要求的电镀层,这在工业应用中称为孔壁活化,其印制电路商用生产过程需要多个中间贮槽,每个贮槽都有其自身的控制和养护要求。通孔电镀是钻孔制作过程的后续必要制作过程,当钻头钻过铜箔及其下面的基板时,产生的热量使构成大多数基板基体的绝缘合成树脂熔化,熔化的树脂及其他钻孔碎片堆积在孔洞周围,涂敷在铜箔中新暴露出的孔壁上,事实上这对后续的电镀表面是有害的。熔化的树脂还会在基板孔壁上残留下一层热轴,它对于大多数活化剂都表现出了不良的粘着性,这就需要开发一类类似去污渍和回蚀化学作用的技术。     更适合印制电路板原型制作的一种方法是使用一种特别设计的低粘度的油墨,用来在每个通孔内壁上形成高粘着性、高导电性的覆膜。这样就不必使用多个化学处理过程,仅需一个应用步骤,随后进行热固化,就可以在所有的孔壁内侧形成连续的覆膜,它不需要进一步处理就可以直接电镀。这种油墨是一种基于树脂的物质,它具有很强烈的粘着性,可以毫不费力的粘接在大多数热抛光的孔壁上,这样就消除了回蚀这一步骤。     3     卷轮连动式选择镀     电子元器件的引脚和插针,例如连接器、集成电路、晶体管和柔性印制电路等都是采用选择镀来获得良好的接触电阻和抗腐蚀性的。这种电镀方法可以采用手工方式,也可以采用自动方式,单独的对每一个插针进行选择镀非常昂贵,故必须采用批量焊接。通常,将辗平成所需厚度的金属箔的两端进行冲切,采用化学或机械的方法进行清洁,然后有选择的采用像镍、金、银、铑、钮或锡镍合金、铜镍合金、镍铅合金等进行连续电镀。在选择镀这一电镀方法,首先在金属铜箔板不需要电镀的部分覆上一层阻剂膜,只在选定的铜箔部分进行电镀。     4     刷镀     另外一种选择镀的方法称为"刷镀"。它是一种电沉积技术,在电镀过程中并不是所有的部分均浸没在电解液中。在这种电镀技术中,只对有限的区域进行电镀,而对其余的部分没有任何影响。通常,将稀有金属镀在印制电路板上所选择的部分,例如像板边连接器等区域。刷镀在电子组装车间中维修废弃电路板时使用得更多。将一个特殊的阳极(化学反应不活泼的阳极,例如石墨)包裹在有吸收能力的材料中(棉花棒),用它来将电镀溶液带到所需要进行电镀的地方。

  • 2019-06-18
  • 发表了主题帖: 选择PCB元件的六大技巧

        最佳PCB设计方法:在基于元件封装选择时需要考虑的六件事。本文中的所有例子都是用Multisim设计环境开发的,不过即使使用不同的EDA工具,同样的概念仍然适用。     1.考虑元件封装的选择     在整个原理图绘制阶段,就应该考虑需要在版图阶段作出的元件封装和焊盘图案决定。下面给出了在根据元件封装选择元件时需要考虑的一些建议。     记住,封装包括了元件的电气焊盘连接和机械尺寸(X、Y和Z),即元件本体的外形以及连接PCB的引脚。在选择元件时,需要考虑最终PCB的顶层和底层可能存在的任何安装或包装限制。一些元件(如有极性电容)可能有高度净空限制,需要在元件选择过程中加以考虑。在最初开始设计时,可以先画一个基本的电路板外框形状,然后放置上一些计划要使用的大型或位置关键元件(如连接器)。这样,就能直观快速地看到(没有布线的)电路板虚拟透视图,并给出相对精确的电路板和元器件的相对定位和元件高度。这将有助于确保PCB经过装配后元件能合适地放进外包装(塑料制品、机箱、机框等)内。从工具菜单中调用三维预览模式即可浏览整块电路板。     焊盘图案显示了PCB上焊接器件的实际焊盘或过孔形状。PCB上的这些铜图案还包含有一些基本的形状信息。焊盘图案的尺寸需要正确才能确保正确的焊接,并确保所连元件正确的机械和热完整性。在设计PCB版图时,需要考虑电路板将如何制造,或者是手工焊接的话,焊盘将如何焊接。回流焊(焊剂在受控的高温炉中熔化)可以处理种类广泛的表贴器件(SMD)。波峰焊一般用来焊接电路板的反面,以固定通孔器件,但也可以处理放置在PCB背面的一些表贴元件。通常在采用这种技术时,底层表贴器件必须按一个特定的方向排列,而且为了适应这种焊接方式,可能需要修改焊盘。     在整个设计过程中可以改变元件的选择。在设计过程早期就确定哪些器件应该用电镀通孔(PTH)、哪些应该用表贴技术(SMT)将有助于PCB的整体规划。需要考虑的因素有器件成本、可用性、器件面积密度和功耗等等。从制造角度看,表贴器件通常要比通孔器件便宜,而且一般可用性较高。对于中小规模的原型项目来说,最好选用较大的表贴器件或通孔器件,不仅方便手工焊接,而且有利于查错和调试过程中更好的连接焊盘和信号。     如果数据库中没有现成的封装,一般是在工具中创建定制的封装。     2.使用良好的接地方法     确保设计具有足够的旁路电容和地平面。在使用集成电路时,确保在靠近电源端到地(最好是地平面)的位置使用合适的去耦电容。电容的合适容量取决于具体应用、电容技术和工作频率。当旁路电容放置在电源和接地引脚之间、并且靠近正确的IC引脚摆放时,可以优化电路的电磁兼容性和易感性。     3.分配虚拟元件封装     打印一份材料清单(BOM)用于检查虚拟元件。虚拟元件没有相关的封装,不会传送到版图阶段。创建一份材料清单,然后查看设计中的所有虚拟元件。唯一的条目应该是电源和地信号,因为它们被认为是虚拟元件,只在原理图环境中进行专门的处理,不会传送到版图设计。除非用于仿真目的,在虚拟部分显示的元件都应该用具有封装的元件替代。     4.确保您有完整的材料清单数据     检查材料清单报告中是否有足够完整的数据。在创建出材料清单报告后,要进行仔细检查,对所有元件条目中不完整的器件、供应商或制造商信息补充完整。     5.根据元件标号进行排序     为了有助于材料清单的排序和查看,确保元件标号是连续编号的。     6.检查多余的门电路     一般来说,所有多余门的输入都应该有信号连接,避免输入端悬空。确保您检查了所有多余的或遗漏的门电路,并且所有没有连线的输入端都完全连上了。在一些情况下,如果输入端处于悬浮状态,整个系统都不能正确工作。就拿设计中经常使用的双运放来说。如果双路运放IC元件中只用了其中一个运放,建议要么把另一个运放也用起来,要么将不用的运放的输入端接地,并且布放一个合适的单位增益(或其它增益)反馈网络,从而确保整个元件能正常工作。     在某些情况下,存在悬浮引脚的IC可能无法正常工作在指标范围内。通常只有当IC器件或同一器件中的其它门不是工作在饱和状态输入或输出接近或处于元件电源轨时,这个IC工作时才能满足指标要求。仿真通常不能捕捉到这种情况,因为仿真模型一般不会将IC的多个部分连接在一起用于建模悬浮连接效应。 此内容由EEWORLD论坛网友中信华原创,如需转载或用于商业用途需征得作者同意并注明出处

  • 2019-06-12
  • 发表了主题帖: 超全面的pcb失效分析技术

        PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。随着电子信息产品的小型化以及无铅无卤化的环保要求,PCB也向高密度高Tg以及环保的方向发展。但是由于成本以及技术的原因,PCB在生产和应用过程中出现了大量的失效问题,并因此引发了许多的质量纠纷。为了弄清楚失效的原因以便找到解决问题的办法和分清责任,必须对所发生的失效案例进行失效分析。     失效分析的基本程序     要获得PCB失效或不良的准确原因或者机理,必须遵守基本的原则及分析流程,否则可能会漏掉宝贵的失效信息,造成分析不能继续或可能得到错误的结论。一般的基本流程是,首先必须基于失效现象,通过信息收集、功能测试、电性能测试以及简单的外观检查,确定失效部位与失效模式,即失效定位或故障定位。对于简单的PCB或PCBA,失效的部位很容易确定,但是,对于较为复杂的BGA或MCM封装的器件或基板,缺陷不易通过显微镜观察,一时不易确定,这个时候就需要借助其它手段来确定。接着就要进行失效机理的分析,即使用各种物理、化学手段分析导致PCB失效或缺陷产生的机理,如虚焊、污染、机械损伤、潮湿应力、介质腐蚀、疲劳损伤、CAF或离子迁移、应力过载等等。再就是失效原因分析,即基于失效机理与制程过程分析,寻找导致失效机理发生的原因,必要时进行试验验证,一般尽应该可能的进行试验验证,通过试验验证可以找到准确的诱导失效的原因。这就为下一步的改进提供了有的放矢的依据。最后,就是根据分析过程所获得试验数据、事实与结论,编制失效分析报告,要求报告的事实清楚、逻辑推理严密、条理性强,切忌凭空想象。     分析的过程中,注意使用分析方法应该从简单到复杂、从外到里、从不破坏样品再到使用破坏的基本原则。只有这样,才可以避免丢失关键信息、避免引入新的人为的失效机理。就好比交通事故,如果事故的一方破坏或逃离了现场,在高明的警察也很难作出准确责任认定,这时的交通法规一般就要求逃离现场者或破坏现场的一方承担全部责任。PCB或PCBA的失效分析也一样,如果使用电烙铁对失效的焊点进行补焊处理或大剪刀进行强力剪裁PCB,那么再分析就无从下手了,失效的现场已经破坏了。特别是在失效样品少的情况下,一旦破坏或损伤了失效现场的环境,真正的失效原因就无法获得了。     失效分析技术     光学显微镜     光学显微镜主要用于PCB的外观检查,寻找失效的部位和相关的物证,初步判断PCB的失效模式。外观检查主要检查PCB的污染、腐蚀、爆板的位置、电路布线以及失效的规律性、如是批次的或是个别,是不是总是集中在某个区域等等。     X射线(X-ray)     对于某些不能通过外观检查到的部位以及PCB的通孔内部和其他内部缺陷,只好使用X射线透视系统来检查。X光透视系统就是利用不同材料厚度或是不同材料密度对X光的吸湿或透过率的不同原理来成像。该技术更多地用来检查PCBA焊点内部的缺陷、通孔内部缺陷和高密度封装的BGA或CSP器件的缺陷焊点的定位。     切片分析     切片分析就是通过取样、镶嵌、切片、抛磨、腐蚀、观察等一系列手段和步骤获得PCB横截面结构的过程。通过切片分析可以得到反映PCB(通孔、镀层等)质量的微观结构的丰富信息,为下一步的质量改进提供很好的依据。但是该方法是破坏性的,一旦进行了切片,样品就必然遭到破坏。     扫描声学显微镜     目前用于电子封装或组装分析的主要是C模式的超声扫描声学显微镜,它是利用高频超声波在材料不连续界面上反射产生的振幅及位相与极性变化来成像,其扫描方式是沿着Z轴扫描X-Y平面的信息。因此,扫描声学显微镜可以用来检测元器件、材料以及PCB与PCBA内部的各种缺陷,包括裂纹、分层、夹杂物以及空洞等。如果扫描声学的频率宽度足够的话,还可以直接检测到焊点的内部缺陷。典型的扫描声学的图像是以红色的警示色表示缺陷的存在,由于大量塑料封装的元器件使用在SMT工艺中,由有铅转换成无铅工艺的过程中,大量的潮湿回流敏感问题产生,即吸湿的塑封器件会在更高的无铅工艺温度下回流时出现内部或基板分层开裂现象,在无铅工艺的高温下普通的PCB也会常常出现爆板现象。此时,扫描声学显微镜就凸现其在多层高密度PCB无损探伤方面的特别优势。而一般的明显的爆板则只需通过目测外观就能检测出来。     显微红外分析     显微红外分析就是将红外光谱与显微镜结合在一起的分析方法,它利用不同材料(主要是有机物)对红外光谱不同吸收的原理,分析材料的化合物成分,再结合显微镜可使可见光与红外光同光路,只要在可见的视场下,就可以寻找要分析微量的有机污染物。如果没有显微镜的结合,通常红外光谱只能分析样品量较多的样品。而电子工艺中很多情况是微量污染就可以导致PCB焊盘或引线脚的可焊性不良,可以想象,没有显微镜配套的红外光谱是很难解决工艺问题的。显微红外分析的主要用途就是分析被焊面或焊点表面的有机污染物,分析腐蚀或可焊性不良的原因。     扫描电子显微镜分析(SEM)     扫描电子显微镜(SEM)是进行失效分析的一种最有用的大型电子显微成像系统,最常用作形貌观察,现时的扫描电子显微镜的功能已经很强大,任何精细结构或表面特征均可放大到几十万倍进行观察与分析。     在PCB或焊点的失效分析方面,SEM主要用来作失效机理的分析,具体说来就是用来观察焊盘表面的形貌结构、焊点金相组织、测量金属间化物、可焊性镀层分析以及做锡须分析测量等。与光学显微镜不同,扫描电镜所成的是电子像,因此只有黑白两色,并且扫描电镜的试样要求导电,对非导体和部分半导体需要喷金或碳处理,否则电荷聚集在样品表面就影响样品的观察。此外,扫描电镜图像景深远远大于光学显微镜,是针对金相结构、显微断口以及锡须等不平整样品的重要分析方法。     热分析     差示扫描量热仪(DSC)     差示扫描量热法(DifferentialScanningCalorim-etry)是在程序控温下,测量输入到物质与参比物质之间的功率差与温度(或时间)关系的一种方法。是研究热量随温度变化关系的分析方法,根据这种变化关系,可研究分析材料的物理化学及热力学性能。DSC的应用广泛,但在PCB的分析方面主要用于测量PCB上所用的各种高分子材料的固化程度、玻璃态转化温度,这两个参数决定着PCB在后续工艺过程中的可靠性。     热机械分析仪(TMA)     热机械分析技术(ThermalMechanicalAnalysis)用于程序控温下,测量固体、液体和凝胶在热或机械力作用下的形变性能。是研究热与机械性能关系的方法,根据形变与温度(或时间)的关系,可研究分析材料的物理化学及热力学性能。TMA的应用广泛,在PCB的分析方面主要用于PCB最关键的两个参数:测量其线性膨胀系数和玻璃态转化温度。膨胀系数过大的基材的PCB在焊接组装后常常会导致金属化孔的断裂失效。     热重分析仪(TGA)     热重法(ThermogravimetryAnalysis)是在程序控温下,测量物质的质量随温度(或时间)的变化关系的一种方法。TGA通过精密的电子天平可监测物质在程控变温过程中发生的细微的质量变化。根据物质质量随温度(或时间)的变化关系,可研究分析材料的物理化学及热力学性能。在PCB的分析方面,主要用于测量PCB材料的热稳定性或热分解温度,如果基材的热分解温度太低,PCB在经过焊接过程的高温时将会发生爆板或分层失效现象。

  • 2019-05-23
  • 发表了主题帖: PCB设计该如何布局?

        元器件的布局在满足电路性能的前提下,还要考虑元器件摆放整齐、美观,便于测试,板子的机械尺寸,插座的位置等也需认真考虑。     元件布置合理是设计出优质PCB图的基本前提。关于元件布局的要求主要有安装、受力、受热、信号、美观五方面的要求。     1.安装     指在具体的应用场合下,为了将电路板顺利安装进机箱、外壳、插槽,不致发生空间干涉、短路等事故,并使指定接插件处于机箱或外壳上的指定位置而提出的一系列基本要求。     2.受力     电路板应能承受安装和工作中所受的各种外力和震动。为此电路板应具有合理的形状,板上的各种孔(螺钉孔、异型孔)的位置要合理安排。一般孔与板边距离至少要大于孔的直径。同时还要注意异型孔造成的板的最薄弱截面也应具有足够的抗弯强度。板上直接"伸"出设备外壳的接插件尤其要合理固定,保证长期使用的可靠性。     3.受热     对于大功率的、发热严重的器件,除保证散热条件外,还要注意放置在适当的位置。尤其在精密的模拟系统中,要格外注意这些器件产生的温度场对脆弱的前级放大电路的不利影响。一般功率非常大的部分应单独做成一个模块,并与信号处理电路间采取一定的热隔离措施。     4.信号     信号的干扰PCB版图设计中所要考虑的最重要的因素。几个最基本的方面是:弱信号电路与强信号电路分开甚至隔离;交流部分与直流部分分开;高频部分与低频部分分开;注意信号线的走向;地线的布置;适当的屏蔽、滤波等措施。这些都是大量的论著反复强调过的,这里不再重复。     5.美观     不仅要考虑元件放置的整齐有序,更要考虑走线的优美流畅。由于一般外行人有时更强调前者,以此来片面评价电路设计的优劣,为了产品的形象,在性能要求不苛刻时要优先考虑前者。但是,在高性能的场合,如果不得不采用双面板,而且电路板也封装在里面,平时看不见,就应该优先强调走线的美观。

  • 2019-05-21
  • 发表了主题帖: DXP中如何设置个别走线阻焊层开窗?

        电路中需要驱动8路继电器,当多路继电器闭合导通时电流大增,为保证实际效果,在加宽电流线的同时,希望去掉电流线上的阻焊层——绿油层,板子做出来以后,就可以往上面加锡,加厚线路,可以通过更大的电流。     1、如何在DXP中去掉个别线的绿油呢?     方法如下:     A、在toplayer(或bottomlayer取决于预置线所在的层)中把这根线画好;B、在topsolder(或bottomsolder)层中画与这根线重合的线就可以了。     这根线选用非电气线画。理由如下:soldermask层是负片,有东西的地方就没有绿油,没有东西的地方就有绿油。那么哪个地方不要绿油就在这层画点东西。     2、如何在DXP中大面积的阻焊层开天窗呢?     阻焊层开窗就是在topsolder层(或bottomsolder层),在需要的地方选用覆铜工具拖拽出相应的图形就可以了,虽然也是用覆铜工具,但不是覆铜,它只是表示圈起来的部分不要阻焊,没有网络的概念。     补充内容:     1)topsolder为助焊层,说白一点就是说,有这个层的地方就没有绿油,如果有线路的地方就喷上锡了,没有线路的地方就是光板,所以很多人把这层以线路层结合用,可以用作上锡处理.     2)toppaster为钢网层,这是通俗的说法,就是你交给钢网厂做网网,你需要交给他的就是这层     经常范的错误:     1)把toppasete层当作solder层用,要上锡的地方画上一个paseter层,结果因为用的是pasete层没有开窗。     2)把solder层当作线路层跟助焊层一起用,以为有这个层的地方就有线路跟开窗,这是非常不对的。 此内容由EEWORLD论坛网友中信华原创,如需转载或用于商业用途需征得作者同意并注明出处

  • 2019-05-18
  • 发表了主题帖: 如何防止PCB板子过回焊炉发生板弯及板翘

        在PCB板子过回焊炉容易发生板弯及板翘,大家都知道,那么如何防止PCB板子过回焊炉发生板弯及板翘,下面就为大家阐述下:     1.降低温度对PCB板子应力的影响     既然「温度」是板子应力的主要来源,所以只要降低回焊炉的温度或是调慢板子在回焊炉中升温及冷却的速度,就可以大大地降低板弯及板翘的情形发生。不过可能会有其他副作用发生,比如说焊锡短路。     2.采用高Tg的板材     Tg是玻璃转换温度,也就是材料由玻璃态转变成橡胶态的温度,Tg值越低的材料,表示其板子进入回焊炉后开始变软的速度越快,而且变成柔软橡胶态的时间也会变长,板子的变形量当然就会越严重。采用较高Tg的板材就可以增加其承受应力变形的能力,但是相对地材料的价钱也比较高。     3.增加电路板的厚度     许多电子的产品为了达到更轻薄的目的,板子的厚度已经剩下1.0mm、0.8mm,甚至做到了0.6mm的厚度,这样的厚度要保持板子在经过回焊炉不变形,真的有点强人所难,建议如果没有轻薄的要求,板子最好可以使用1.6mm的厚度,可以大大降低板弯及变形的风险。     4.减少电路板的尺寸与减少拼板的数量     既然大部分的回焊炉都采用链条来带动电路板前进,尺寸越大的电路板会因为其自身的重量,在回焊炉中凹陷变形,所以尽量把电路板的长边当成板边放在回焊炉的链条上,就可以降低电路板本身重量所造成的凹陷变形,把拼板数量降低也是基于这个理由,也就是说过炉的时候,尽量用窄边垂直过炉方向,可以达到最低的凹陷变形量。     5.使用过炉托盘治具     如果上述方法都很难作到,最后就是使用过炉托盘(reflowcarrier/template)来降低变形量了,过炉托盘可以降低板弯板翘的原因是因为不管是热胀还是冷缩,都希望托盘可以固定住电路板等到电路板的温度低于Tg值开始重新变硬之后,还可以维持住园来的尺寸。     如果单层的托盘还无法降低电路板的变形量,就必须再加一层盖子,把电路板用上下两层托盘夹起来,这样就可以大大降低电路板过回焊炉变形的问题了。不过这过炉托盘挺贵的,而且还得加人工来置放与回收托盘。     6.改用Router替代V-Cut的分板使用     既然V-Cut会破坏电路板间拼板的结构强度,那就尽量不要使用V-Cut的分板,或是降低V-Cut的深度。

  • 2019-04-25
  • 发表了主题帖: PCB覆铜箔层压板分类及其制造方法简介

        覆铜箔层压板是加工制作PCB的基板,是材料使用量最大、最重要的种类,覆箔板的制造过程是把玻璃纤维布、玻璃纤维毡、纸等增强材料浸渍环氧树脂、酚醛树脂等粘合剂,在适当温度下烘干至一阶段,得到预浸渍材料(简称浸胶料),然后将它们按工艺要求和铜箔叠层,在层压机上经加热加压得到所需要的覆铜箔层压板。     覆铜箔层压板在PCB板中除了用作支撑各种元器件外,并能实现它们之间的电气连接或电绝缘。     一、覆铜箔层压板分类     覆铜箔层压板由铜箔、增强材料、粘合剂三部分组成。板材通常按增强材料类别和粘合剂类别或板材特性分类。     1、按增强材料分类     覆铜箔层压板最常用的增强材料为无碱(碱金属氧化物含量不超过0.5%)玻璃纤维制品(如玻璃布、玻璃毡)或纸(如木浆纸、漂白木浆纸、棉绒纸)等。因此,覆铜箔层压板可分为玻璃布基和纸基两大类。     2、按粘合剂类型分类     覆箔板所用粘合剂主要有酚醛、环氧、聚酯、聚酰亚胺、聚四氟乙烯树脂等,因此,覆箔板也相应分成酚醛型、环氧型、聚酯型、聚酰亚胺型、聚四氟乙烯型覆箔板。     3、按基材特性及用途分类     根据基材在火焰中及离开火源以后的燃烧程度可分为通用型和自熄型;根据基材弯曲程度可分为刚性和挠性覆箔板;根据基材的工作温度和工作环境条件可分为耐热型、抗辐射型、高频用覆箔板等。此外,还有在特殊场合使用的覆箔板,例如预制内层覆箔板、金属基覆箔板以及根据箔材种类可分为铜箔、镍箔、银箔、铝箔、康铜箔、铍铜箔覆箔板。     4、常用覆箔板型号     按GB4721-1984规定,覆铜箔层压板一般由五个英文字母组合表示:第一个字母C表示覆的铜箔,第二、三两个字母表示基材选用的粘合剂树脂。例如:PE表示酚醛;EP表示环氧;uP表示不饱和聚酯;SI表示有机硅;TF表示聚四氟乙烯;PI表示聚酰亚胺。第四、五个字母表示基材选用的增强材料。例如:CP表示纤维素纤维纸;GC表示无碱玻璃纤维布;GM表示无碱玻璃纤维毡。     如覆箔板的基材内芯以纤维纸、纤维素为增强材料,两面贴附无碱玻璃布者,可在CP之后加G。     型号中横线右面的两位数字,表示同一类型而不同性能的产品编号。例如覆铜箔酚醛纸层压板编号为O1~20,覆铜箔环氧纸层压板编号为21~30;覆铜箔环氧玻璃布层压板编号为31~40。     如在产品编号后加有字母F的,则表示该覆箔板是自熄性的。     二、覆铜箔层压板制造方法     覆铜箔层压板的制造主要有树脂溶液配制、增强材料浸胶和压制成型三个步骤。     1、制造覆铜箔层压板的主要原材料     制造覆铜板的主要原材料为树脂、纸、玻璃布、铜箔。     (1)树脂     覆铜箔层压板用的树脂有酚醛、环氧、聚酯、聚酰亚胺等。其中以酚醛树脂和环氧树脂用量最大。     酚醛树脂是酚类和醛类在酸性介质或碱性介质中缩聚而成的一类树脂。其中,以苯酚和甲醛在碱性介质中缩聚的树脂是纸基覆箔板的主要原材料。在纸基覆箔板制造中,为了得到各种性能优良的板材,往往需要对酚醛树脂进行各种改性,并严格控制树脂的游离酚和挥发物含量,以保证板材在热冲击下不分层、不起泡。     环氧树脂是玻璃布基覆箔板的主要原材料,它具有优异的粘结性能和电气、物理性能。比较常用的有E-20型、E-44型、E-51型及自熄性E-20、E-25型。为了提高覆箔板基材的透明度,以便在印制板生产中检查图形缺陷,要求环氧树脂应有较浅色泽。     (2)浸渍纸     常用的浸渍纸有棉绒纸、木浆纸和漂白木浆纸。棉绒纸是用纤维较短的棉纤维制成,其特点是树脂的浸透性较好,制得板材的冲裁性和电性能也较好。木浆纸主要由木纤维制成,一般较棉绒纸价格低,而机械强度较高,使用漂白木浆纸可提高板材外观。     为了提高板材性能,浸渍纸的厚度偏差、标重、断裂强度和吸水性等指标需要得到保证。     (3)无碱玻璃布     无碱玻璃布是玻璃布基覆箔板的增强材料,对于特殊的高频用途,可使用石英玻璃布。     对无碱玻璃布的含碱量(以Na20表示),IEC标准规定不超过1%,JIS标准R3413-1978规定不超过0.8%,前苏联TOCT5937-68标准规定不大于0.5%,我国建工部标准JC-170-80规定不大于0.5%。     为了适应通用型、薄型及多层印制板的需要,国外覆箔板用的玻璃布型号已系列化。其厚度范围为0.025~0.234mm。专门需要的玻璃布又都用偶联进行后处理。为了提高环氧玻璃布基覆箔板的机械加工性能及降低板材成本,近年来又发展了无纺玻璃纤维(亦称玻璃毡)。     (4)铜箔     覆箔板的箔材可用铜、镍、铝等多种金属箔。但从金属箔的导电率、可焊性、延伸率、对基材的粘附能力及价格等因素出发,除特种用途外,以铜箔最为合适。     铜箔可分压延铜箔和电解铜箔,压延铜箔主要用在挠性印制电路及其他一些特殊用途上。在覆箔板生产上,大量应用的是电解铜箔。对铜的纯度,IEC-249-34和我国标准都规定不得低于99.8%。     当前,国内印制板用铜箔厚度多为35um,50um的铜箔作为过渡产品,在高精度的孔金属化双面或多层板制造中,希望采用比35um更薄的铜箔,如18um、9um和5um。有些多层板内层覆箔板采用较厚的铜箔,如70um。     为了提高铜箔对基材的粘合强度,通常使用氧化铜箔(即经氧化处理,使铜箔表面生成一层氧化铜或氧化亚铜,由于极性作用,提高了铜箔和基材的粘合强度)或粗化铜箔(采用电化学方法使铜箔表面生成一层粗化层,增加了铜箔表面积,因粗化层对基材的抛锚效应而提高了铜箔和基材的粘合强度)。为了避免因铜氧化物粉末脱落而移到基材上去,铜箔表面的处理方法也不断改进。例如,TW型铜箔是在铜箔粗化面上镀一薄层锌,这时铜箔表面呈灰色;TC型铜箔是在铜箔粗化面上镀上一薄层铜锌合金,这时铜箔表面呈金黄色。经过特殊处理,铜箔的抗热变色性、抗氧化性及在印制板制造中的耐氰化物能力都相应提高。     铜箔的表面应光洁,不得有明显的皱折、氧化斑、划痕、麻点、凹坑和玷污。305g/m2及以上铜箔的孔隙率要求在300ram×300mm面积内渗透点不超过8个;在0.5m2面积上铜箔的孔隙总面积不超过直径为0.125mm的圆面积。305g/m2以下铜箔的孔隙率和孔尺寸由供需双方商定。铜箔的单位面积重量及厚度应符合表2.1规定。     1e     铜箔在投入使用前,必要时取样作压制试验。压制试验可显示出它的抗剥强度和一般表面质量。     2、覆铜箔层压板制造工艺     覆铜箔层压板生产工艺流程如下:     树脂合成与胶液配制-增强材料浸胶与烘干-浸胶料剪切与检验-浸胶料与铜箔叠层-热压成型-裁剪-检验包装。     树脂溶液的合成与配制都是在反应釜中进行的。纸基覆箔板用的酚醛树脂大多是由覆箔板厂合成。     玻璃布基覆箔板的生产是将原料厂提供的环氧树脂与固化剂混合溶解于丙酮或二甲基甲酰胺、乙二醇甲醚中,经过搅拌使其成为均匀的树脂溶液。树脂溶液经熟化8~24h后就可用于浸胶。     浸胶是在浸胶机上进行的。浸胶机分卧式和立式两种。卧式浸胶主要用于浸渍纸,立式浸胶机主要用于浸渍强度较高的玻璃布。浸渍树脂液的纸或玻璃布主,经过挤胶辊进入烘道烘干后,剪切成一定的尺寸,经检验合格后备用。     根据产品设计要求,把铜箔和经过浸胶烘干的纸或玻璃布配成叠层,放进有脱模薄膜或有脱模剂的两块不锈钢板中间,叠层连同钢板一起放到液压机中进行压制。     合格的覆箔板应进行包装。每两张双面覆箔板间应垫一层低含硫量隔离纸,然后装进聚乙烯塑料袋内或包上防潮纸。     覆箔板在运输和储存过程中,应离地平放并防止雨淋、高温日光照射及机械损伤。覆箔板库房温度不超过35℃,相对湿度不大于75%,无腐蚀性气体存在。覆箔板的储存期由出库日期算起为5年,超过期限按技术要求检验,合格者仍可使用。

  • 2019-04-10
  • 发表了主题帖: PCB板级屏蔽设计

    电子设备越来越小,用户的需求也各具特点,这使得印刷电路板的设计越来越复杂-更不用说完成的设计不仅要满足功能性测试,还要满足美国联邦通信委员会和其他法规规定的兼容性测试。一个新的电子设备典型设计流程如下:首先由市场组根据市场需求确定所需特征;然后由产业工程师设计产品的主要特征,如用户界面,平台规模,腔体设计以及机械元件;最后由元件和PCB板工程师根据这些规范进行回路和元件的布局。 许多设计工程师首先考虑的是屏蔽要求,即通过将噪声元件放在离敏感元件尽可能远的地方以减小潜在的干扰;然而,他们也意识到如果产品未能通过检测实验室的认证测试,他们不得不通过在PCB板上加屏蔽腔以提供屏蔽。为了给屏蔽腔留出足够的空间,他们只好把最大的元件放在一起以最好地利用这些屏蔽腔。但是这种思路需要根据屏蔽体形状和屏蔽要求进行PCB板设计,而无法寻求空间利用的最大化和功能的优化设计。 通过采用热成型板级屏蔽体(图1)代替传统屏蔽技术,设计工程师能够根据功能要求将元件和电路置于PCB板上,而不必根据已有屏蔽腔的固定形状进行设计。工程师利用这些热成型屏蔽体,就能够基于电路和元件功能进行板级设计,而不再受限于传统屏蔽腔的形状。选用单个热成型屏蔽腔具有很多特别的好处,能为板级设计,一体化和性能增加很大的灵活性。 板级设计的灵活性当今的客户希望有各种形状和尺寸的电子设备,这种需求就需要特定的腔体设计和PCB板形状。现成的元件和腔体一般是方形或矩形的,而在非规则的PCB板上放置方形屏蔽腔会对工程师在PCB板上放置元件的能力造成影响。不论PCB板尺寸如何,热成型屏蔽体都能够按照任意的PCB板成形,而不会增加制造屏蔽体的复杂性。选择热成型屏蔽体的设计者在项目开始阶段可以更多的关注于有效板级设计,而不会受限于电磁干扰屏蔽体的外形和构造。例如,图2为一个圆形的PCB板及用于满足法规和功能要求相应的热成型,多腔体屏蔽体。如果采用传统的屏蔽技术,这种类型的PCB板就需要7个独立的屏蔽腔,因此会占用更多的空间。http://www.eda365.com/forum.php?mod=attachment&aid=MTc5MzMzfGRmNGVjOGE5fDE1NTQ4ODE3Njl8MzMzNzk4fDIwMzYzMA%3D%3D&noupdate=yes图1 具有球形焊料走线的热成型屏蔽体可以保证产品具有可靠的性能而且,热成型屏蔽体将所需的空间最小化到单个屏蔽体大小。当PCB板上有多个屏蔽腔时,每个腔体都需要独立的走线接地,与此不同,如果PCB板采用热成型的多腔体屏蔽腔,该腔体就能够通过一排球形焊料连接到接地平面。通过对比发现,如果工程师准备使用两个单独的屏蔽腔,那么每个腔体都需要自己的接地线,并且腔体之间要留有间隔。但如果采用热成型、多腔屏蔽体,则只需要在腔体之间设置一根独立的接地线即可(图3)。 热成型屏蔽体带来的设计灵活性确保了能够对其他必要特征进行设计,如设计避免耦合的过孔,电缆和连接的接入点,以及用于冷却的气孔。具有这种灵活性,设计时就能将元件和电路放在最优的位置,而不用首先考虑屏蔽的要求。 一体化的灵活性热成型板级屏蔽体的设计和构造以各种方式增加了腔体内的可用空间。如果选用现成的元件和屏蔽腔,则需要留出足够的空间以避免PCB板上最高的元件与腔体内表面发生短路。但如果采用热成型屏蔽体则不需要这个附加的空间,因为热成型屏蔽体是由轻的金属化塑料制成,因此腔体内表面不导电。http://www.eda365.com/forum.php?mod=attachment&aid=MTc5MzM0fDZiMzBiYTkwfDE1NTQ4ODE3Njl8MzMzNzk4fDIwMzYzMA%3D%3D&noupdate=yes图3 热成型多腔屏蔽体只需要一根独立的焊线而且,传统的屏蔽体高度一般是均匀的,因此某区域屏蔽体的高度由该屏蔽区域的最高元件决定。然而,热成型屏蔽体使设计工程师能够灵活的变化腔体内屏蔽体的高度,这增加了在z轴方向设计的灵活性,周围也能容纳更多的元件和腔体部件。 性能如果PCB板上有多个区域需要屏蔽,有的工程师会采用框盖技术。虽然这种技术能将每个腔体与外界干扰屏蔽开来,但外框与盖子的内部开孔对于干扰非常敏感。热成型多腔屏蔽体能让各个腔体对外界干扰的屏蔽效果保持一致。实际上,用于安装这些屏蔽体的球形焊料有两厘米的接触点,这确保了产品的性能能高达12GHz,并且球形提供了两层的接触,有一定的冗余。另一方面,框盖屏蔽体通过凹陷保证接触,这一般需要5毫米的空间。而且,盖子一般是刚性的,移动不灵活,而且盖子的翻转通常会破坏电气接触,因此框盖技术并不能提供与热成型屏蔽体相同的可靠性能。http://www.eda365.com/forum.php?mod=attachment&aid=MTc5MzM1fDA3MDRlODlifDE1NTQ4ODE3Njl8MzMzNzk4fDIwMzYzMA%3D%3D&noupdate=yes图4 手持式电脑上的PCB板采用了热成型多腔屏蔽体构造热成型屏蔽体的材料一般既牢固又灵活。材料的灵活性避免了屏蔽体在接触点施力,这使得在跌落测试和震动测试中,屏蔽体都能保持与PCB板之间具有良好的接触。案例一个提供自动信息和数据采集及移动计算系统的知名电子公司设计了一款新型的具有扫描能力的手持抗震电脑。这个新模型比以前的模型多了电压计来集成多达五个不同的无线电发射机,而容纳它们的腔体体积却更小。设计过程开始前,这个公司的设计者就决定选用热成型板级屏蔽体-这个设计选择使在PCB板上放置多级元件成为可能(图4)。通过这种方法,设计者增加了产品的多功能性,而且还将模型尺寸减小了7%,并且新产品成功通过了新手持式抗震设备上市所需进行的测试。 如果成品需要通过兼容性测试并在最终用户手里可靠使用,很有必要对PCB板上所有元件进行有效的屏蔽。板级设计者经常使用传统的金属屏蔽腔或框盖技术对元件进行屏蔽。虽然这些选择可能会提供有效的屏蔽,但它们的金属构造,尺寸和刚性经常会给成品的尺寸和功能带来限制。选择质量轻的金属化胶膜屏蔽体,易于热成型成任意形状,这使设计者更多的关注于对可靠的产品进行最优化的设计,并很好满足最终用户的期望。 此内容由EEWORLD论坛网友中信华原创,如需转载或用于商业用途需征得作者同意并注明出处

  • 2019-03-19
  • 发表了主题帖: 那些关于高频电路设计需要的布线技巧

        高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须,也是降低干扰的有效手段。在PCBLayout阶段,合理的选择一定层数的印制板尺寸,能充分利用中间层来设置屏蔽,更好地实现就近接地,并有效地降低寄生电感和缩短信号的传输长度,同时还能大幅度地降低信号的交叉干扰等,所有这些方法都对高频电路的可靠性有利。     同种材料时,四层板要比双面板的噪声低20dB。但是,同时也存在一个问题,PCB半层数越高,制造工艺越复杂,单位成本也就越高,这就要求在进行PCBLayout时,除了选择合适的层数的PCB板,还需要进行合理的元器件布局规划,并采用正确的布线规则来完成设计。下面总结高频布线的几点经验:     1、高频电路器件管脚间的引线层间交替越少越好     所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。一个过孔可带来约0.5pF的分布电容,减少过孔数能显着提高速度和减少数据出错的可能性。     2、高频电路器件管脚间的引线越短越好     信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易耦合到靠近它的元器件上去,所以对于诸如信号的时钟、晶振、DDR的数据、LVDS线、USB线、HDMI线等高频信号线都是要求尽可能的走线越短越好。     3、高速电子器件管脚间的引线弯折越少越好     高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。     4、注意信号线近距离平行走线引入的“串扰”     高频电路布线要注意信号线近距离平行走线所引入的“串扰”,串扰是指没有直接连接的信号线之间的耦合现象。由于高频信号沿着传输线是以电磁波的形式传输的,信号线会起到天线的作用,电磁场的能量会在传输线的周围发射,信号之间由于电磁场的相互耦合而产生的不期望的噪声信号称为串扰(Crosstalk)。PCB板层的参数、信号线的间距、驱动端和接收端的电气特性以及信号线端接方式对串扰都有一定的影响。所以为了减少高频信号的串扰,在布线的时候要求尽可能的做到以下几点:     (1)在布线空间允许的条件下,在串扰较严重的两条线之间插入一条地线或地平面,可以起到隔离的作用而减少串扰;     (2)当信号线周围的空间本身就存在时变的电磁场时,若无法避免平行分布,可在平行信号线的反面布置大面积“地”来大幅减少干扰;     (3)在布线空间许可的前提下,加大相邻信号线间的间距,减小信号线的平行长度,时钟线尽量与关键信号线垂直而不要平行;     (4)如果同一层内的平行走线几乎无法避免,在相邻两个层,走线的方向务必却为相互垂直;     (5)在数字电路中,通常的时钟信号都是边沿变化快的信号,对外串扰大。所以在设计中,时钟线宜用地线包围起来并多打地线孔来减少分布电容,从而减少串扰;     (6)对高频信号时钟尽量使用低电压差分时钟信号并包地方式,需要注意包地打孔的完整性;     (7)闲置不用的输入端不要悬空,而是将其接地或接电源(电源在高频信号回路中也是地),因为悬空的线有可能等效于发射天线,接地就能抑制发射。实践证明,用这种办法消除串扰有时能立即见效。     5、高频数字信号的地线和模拟信号地线做隔     模拟地线、数字地线等接往公共地线时要用高频扼流磁珠连接或者直接隔离并选择合适的地方单点互联。高频数字信号的地线的地电位一般是不一致的,两者直接常常存在一定的电压差,而且,高频数字信号的地线还常常带有非常丰富的高频信号的谐波分量,当直接连接数字信号地线和模拟信号地线时,高频信号的谐波就会通过地线耦合的方式对模拟信号进行干扰。所以通常情况下,对高频数字信号的地线和模拟信号的地线是要做隔离的,可以采用在合适位置单点互联的方式,或者采用高频扼流磁珠互联的方式。     6、集成电路块的电源引脚增加高频退藕电容     每个集成电路块的电源引脚就近增一个高频退藕电容。增加电源引脚的高频退藕电容,可以有效地抑制电源引脚上的高频谐波形成干扰。     7、避免走线形成的环路     各类高频信号走线尽量不要形成环路,若无法避免则应使环路面积尽量小。     8、必须保证良好的信号阻抗匹配     信号在传输的过程中,当阻抗不匹配的时候,信号就会在传输通道中发生信号的反射,反射会使合成信号形成过冲,导致信号在逻辑门限附近波动。     消除反射的根本办法是使传输信号的阻抗良好匹配,由于负载阻抗与传输线的特性阻抗相差越大反射也越大,所以应尽可能使信号传输线的特性阻抗与负载阻抗相等。同时还要注意PCB上的传输线不能出现突变或拐角,尽量保持传输线各点阻抗连续,否则在传输线各段之间也将会出现反射。这就要求在进行高速PCB布线时,必须要遵守以下布线规则:     (1)LVDS布线规则     要求LVDS信号差分走线,线宽7mil,线距6mil,目的是控制HDMI的差分信号对阻抗为100+-15%欧姆;     (2)USB布线规则     要求USB信号差分走线,线宽10mil,线距6mil,地线和信号线距6mil;     (3)HDMI布线规则     要求HDMI信号差分走线,线宽10mil,线距6mil,每两组HDMI差分信号对的间距超过20mil;     (4)DDR布线规则     DDR1走线要求信号尽量不走过孔,信号线等宽,线与线等距,走线必须满足2W原则,以减少信号间的串扰,对DDR2及以上的高速器件,还要求高频数据走线等长,以保证信号的阻抗匹配。

  • 回复了主题帖: pcb新人看过来,这里有一波适合你的学习资料

    PCB设计教程(郭天祥)视频下载地址  这个视频打不开啊? http://download.eeworld.com.cn/detail/zczc/216

最近访客

< 1/1 >

统计信息

已有4人来访过

  • 芯币:80
  • 好友:--
  • 主题:17
  • 回复:1
  • 课时:--
  • 资源:--

留言

你需要登录后才可以留言 登录 | 注册


现在还没有留言